1887

Abstract

Sulphite is widely used as a preservative in foods and beverages for its antimicrobial and antioxidant activities, particularly in winemaking where SO is frequently added. Thus, sulphite resistance mechanisms have been extensively studied in the fermenting yeast Sulphite detoxification, involving a plasma membrane protein encoded by the gene, is the most efficient resistance mechanism in In this study, we characterized the unusual expression pattern of in the wine strain 71B. We provide, for the first time, evidence of induction by sulphite. The study of expression during fermentation and in different growth conditions showed that sulphite is the main regulator of expression, explaining its specific pattern. Combining analyses of gene expression and growth behaviour in response to sulphite, we found that 71B displayed unique behavioural patterns in response to sulphite pre-adaptation that may be explained by changes in expression. Examination of the genomic organization of the locus and sequencing of the region revealed three different alleles in 71B, two of which corresponded to translocated VIII–XVI forms. The lack of differences between promoter regions suggests that this inducible expression pattern is due to modification of regulatory/signalling pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036723-0
2010-06-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1686.html?itemId=/content/journal/micro/10.1099/mic.0.036723-0&mimeType=html&fmt=ahah

References

  1. Aa, E., Townsend, J. P., Adams, R. I., Nielsen, K. M. & Taylor, J. W. ( 2006; ). Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res 6, 702–715.[CrossRef]
    [Google Scholar]
  2. Aranda, A. & del Olmo, M. L. ( 2004; ). Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively. Appl Environ Microbiol 70, 1913–1922.[CrossRef]
    [Google Scholar]
  3. Aranda, A., Jiménez-Martí, E., Orozco, H., Matallana, E. & Del Olmo, M. ( 2006; ). Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast. J Agric Food Chem 54, 5839–5846.[CrossRef]
    [Google Scholar]
  4. Avram, D. & Bakalinsky, A. T. ( 1996; ). Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae. Genetics 144, 511–521.
    [Google Scholar]
  5. Avram, D. & Bakalinsky, A. T. ( 1997; ). SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol 179, 5971–5974.
    [Google Scholar]
  6. Avram, D., Leid, M. & Bakalinsky, A. T. ( 1999; ). Fzf1p of Saccharomyces cerevisiae is a positive regulator of SSU1 transcription and its first zinc finger region is required for DNA binding. Yeast 15, 473–480.[CrossRef]
    [Google Scholar]
  7. Bradbury, J. E., Richards, K. D., Niederer, H. A., Lee, S. A., Rod Dunbar, P. & Gardner, R. C. ( 2006; ). A homozygous diploid subset of commercial wine yeast strains. Antonie Van Leeuwenhoek 89, 27–37.[CrossRef]
    [Google Scholar]
  8. Bustin, S. A., Benes, V., Nolan, T. & Pfaffl, M. W. ( 2005; ). Quantitative real-time RT-PCR – a perspective. J Mol Endocrinol 34, 597–601.[CrossRef]
    [Google Scholar]
  9. Casalone, E., Colella, C. M., Daly, S., Gallori, E., Moriani, L. & Polsinelli, M. ( 1992; ). Mechanism of resistance to sulphite in Saccharomyces cerevisiae. Curr Genet 22, 435–440.[CrossRef]
    [Google Scholar]
  10. Casalone, E., Colella, C. M., Daly, S., Fontana, S., Torricelli, I. & Polsinelli, M. ( 1994; ). Cloning and characterization of a sulphite-resistance gene of Saccharomyces cerevisiae. Yeast 10, 1101–1110.[CrossRef]
    [Google Scholar]
  11. Divol, B., Miot-Sertier, C. & Lonvaud-Funel, A. ( 2006; ). Genetic characterization of strains of Saccharomyces cerevisiae responsible for ‘refermentation’ in botrytis-affected wines. J Appl Microbiol 100, 516–526.[CrossRef]
    [Google Scholar]
  12. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D. & Brown, P. O. ( 2000; ). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241–4257.[CrossRef]
    [Google Scholar]
  13. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C. & other authors ( 1996; ). Life with 6000 genes. Science 274, 546, 563–567.
    [Google Scholar]
  14. Goto-Yamamoto, N., Kitano, K., Shiki, K., Yoshida, Y., Suzuki, T., Iwata, T., Yamane, Y. & Hara, S. ( 1998; ). SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. J Ferment Bioeng 86, 427–433.[CrossRef]
    [Google Scholar]
  15. Hauser, N. C., Fellenberg, K., Gil, R., Bastuck, S., Hoheisel, J. D. & Perez-Ortin, J. E. ( 2001; ). Whole genome analysis of a wine yeast strain. Comp Funct Genomics 2, 69–79.[CrossRef]
    [Google Scholar]
  16. Legras, J. L., Merdinoglu, D., Cornuet, J. M. & Karst, F. ( 2007; ). Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16, 2091–2102.[CrossRef]
    [Google Scholar]
  17. Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., Davey, R. P., Roberts, I. N., Burt, A. & other authors ( 2009; ). Population genomics of domestic and wild yeasts. Nature 458, 337–341.[CrossRef]
    [Google Scholar]
  18. Nardi, T. (2007). Molecular approaches for the individuation and characterization of technological and quality traits in microorganisms of enological interest. PhD thesis University of Padua. http://paduaresearch.cab.unipd.it/3001/.
  19. Novo, M., Bigey, F., Beyne, E., Galeote, V., Gavory, F., Mallet, S., Cambon, B., Legras, J. L., Wincker, P. & Casaregola, S. ( 2009; ). Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci U S A 106, 16333–16338.[CrossRef]
    [Google Scholar]
  20. Park, H. & Bakalinsky, A. T. ( 2000; ). SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16, 881–888.[CrossRef]
    [Google Scholar]
  21. Park, H. & Hwang, Y. S. ( 2008; ). Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 46, 542–548.[CrossRef]
    [Google Scholar]
  22. Perez-Ortin, J. E., Querol, A., Puig, S. & Barrio, E. ( 2002; ). Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12, 1533–1539.[CrossRef]
    [Google Scholar]
  23. Rossignol, T., Dulau, L., Julien, A. & Blondin, B. ( 2003; ). Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20, 1369–1385.[CrossRef]
    [Google Scholar]
  24. Sarver, A. & DeRisi, J. ( 2005; ). Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae. Mol Biol Cell 16, 4781–4791.[CrossRef]
    [Google Scholar]
  25. Teste, M. A., Duquenne, M., Francois, J. M. & Parrou, J. L. ( 2009; ). Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10, 99 [CrossRef]
    [Google Scholar]
  26. Townsend, J. P., Cavalieri, D. & Hartl, D. L. ( 2003; ). Population genetic variation in genome-wide gene expression. Mol Biol Evol 20, 955–963.[CrossRef]
    [Google Scholar]
  27. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. & Speleman, F. ( 2002; ). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034
    [Google Scholar]
  28. Yuasa, N., Nakagawa, Y., Hayakawa, M. & Iimura, Y. ( 2004; ). Distribution of the sulfite resistance gene SSU1-R and the variation in its promoter region in wine yeasts. J Biosci Bioeng 98, 394–397.[CrossRef]
    [Google Scholar]
  29. Yuasa, N., Nakagawa, Y., Hayakawa, M. & Iimura, Y. ( 2005; ). Two alleles of the sulfite resistance genes are differentially regulated in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 69, 1584–1588.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036723-0
Loading
/content/journal/micro/10.1099/mic.0.036723-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error