1887

Abstract

The TTA codon-containing gene of , located upstream of , is in a DNA region syntenous with the homologous region of other genomes. Deletion of results in a medium-dependent sparse aerial mycelium formation and lack of sporulation. Clavulanic acid formation in this mutant decreases to about 10 % of the wild-type level depending on the medium, whereas its production is strongly stimulated by increasing the copy number. Quantitative transcriptional analysis indicates that expression of the clavulanic acid regulatory genes and decreases seven- and fourfold, respectively, in the Δ mutant, resulting in a large decrease in expression of genes encoding biosynthesis enzymes for the early steps of clavulanic acid formation and a smaller decrease in the expression of genes for the late steps of the pathway. An ARE box, 5′-TCTCATGGAGACATAGCGGGGCATGC-3′, is present upstream of and efficiently binds Brp protein, as shown by electrophoretic mobility shift assay (EMSA) analysis. The transcription level of is higher in the absence of Brp, as shown in Δ, suggesting a connection between expression and the -butyrolactone system in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035956-0
2010-08-01
2020-07-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2354.html?itemId=/content/journal/micro/10.1099/mic.0.035956-0&mimeType=html&fmt=ahah

References

  1. Aigle B., Wietzorrek A., Takano E., Bibb M. J.. 2000; A single amino acid substitution in region 1.2 of the principal sigma factor of Streptomyces coelicolor A3(2) results in pleiotropic loss of antibiotic production. Mol Microbiol37:995–1004
    [Google Scholar]
  2. Burton K.. 1968; Determination of DNA concentration with diphenylamine. Methods Enzymol12:163–166
    [Google Scholar]
  3. Buttner M. J., Chater K. F., Bibb M. J.. 1990; Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2. J Bacteriol172:3367–3378
    [Google Scholar]
  4. Chater K. F., Chandra G.. 2008; The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol46:1–11
    [Google Scholar]
  5. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F.. 1991; The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell66:769–780
    [Google Scholar]
  6. Gregory M. A., Till R., Smith M. C.. 2003; Integration site for Streptomyces phage ΦBT1 and development of site-specific integration vectors. J Bacteriol185:5320–5323
    [Google Scholar]
  7. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F.. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A100:1541–1546
    [Google Scholar]
  8. Higashi T., Iwasaki Y., Ohnishi Y., Horinouchi S.. 2007; A-factor and phosphate depletion signals are transmitted to the grixazone biosynthesis genes via the pathway-specific transcriptional activator GriR. J Bacteriol189:3515–3524
    [Google Scholar]
  9. Higgens C. E., Hamill R. L., Sands T. H., Hoehn M. M., Davis N. E., Nagarajan R., Boeck L. D.. 1974; The occurrence of deacetylcephalosporin C in fungi and Streptomyces. J Antibiot27:298–300
    [Google Scholar]
  10. Kato J. Y., Suzuki A., Yamazaki H., Ohnishi Y., Horinouchi S.. 2002; Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J Bacteriol184:6016–6025
    [Google Scholar]
  11. Kato J. Y., Chi W. J., Ohnishi Y., Hong S. K., Horinouchi S.. 2005; Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J Bacteriol187:286–295
    [Google Scholar]
  12. Kieser T., Melton R. E.. 1988; Plasmid pIJ699, a multi-copy positive-selection vector for Streptomyces. Gene65:83–91
    [Google Scholar]
  13. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
  14. Lawlor E. J., Baylis H. A., Chater K. F.. 1987; Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2. Genes Dev1:1305–1310
    [Google Scholar]
  15. Liras P., Martín J. F.. 2005; Assay methods for detection and quantification of antimicrobial metabolites produced by Streptomyces clavuligerus. In Methods in Biotechnology vol18 pp149–163 Edited by Barredo J. L. Totowa, NJ: Humana Press;
  16. Lorenzana L. M., Pérez-Redondo R., Santamarta I., Martín J. F., Liras P.. 2004; Two oligopeptide-permease-encoding genes in the clavulanic acid cluster of Streptomyces clavuligerus are essential for production of the β-lactamase inhibitor. J Bacteriol186:3431–3438
    [Google Scholar]
  17. Nguyen K. T., Tenor J., Stettler H., Nguyen L. T., Nguyen L. D., Thompson C. J.. 2003; Colonial differentiation in Streptomyces coelicolor depends on translation of a specific codon within the adpA gene. J Bacteriol185:7291–7296
    [Google Scholar]
  18. Ohnishi Y., Kameyama S., Osaka H., Horinouchi S.. 1999; The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol34:102–111
    [Google Scholar]
  19. Ohnishi Y., Nishiyama Y., Sato R., Kameyama S., Horinouchi S.. 2000; An oligoribonuclease gene in Streptomyces griseus. J Bacteriol182:4647–4653
    [Google Scholar]
  20. Ohnishi Y., Yamazaki H., Kato J. Y., Tomono A., Horinouchi S.. 2005; AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem69:431–439
    [Google Scholar]
  21. Pan Y., Liu G., Yang H., Tian Y., Tan H.. 2009; The pleiotropic regulator AdpA-L directly controls the pathway specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol72:710–723
    [Google Scholar]
  22. Paradkar A. S., Jensen S. E.. 1995; Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. J Bacteriol177:1307–1314
    [Google Scholar]
  23. Paradkar A. S., Jensen S. E.. 1998; A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol Microbiol27:831–843
    [Google Scholar]
  24. Park S. S., Yang Y. H., Song E., Kim E. J., Kim W. S., Sohng J. K., Lee H. C., Liou K. K., Kim B. G.. 2009; Mass spectrometric screening of transcriptional regulators involved in antibiotic biosynthesis in Streptomyces coelicolor A3(2. J Ind Microbiol Biotechnol36:1073–1083
    [Google Scholar]
  25. Pérez-Llarena F. J., Liras P., Rodríguez-García A., Martín J. F.. 1997; A regulatory gene ( ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol179:2053–2059
    [Google Scholar]
  26. Pérez-Redondo R., Rodríguez-García A., Martín J. F., Liras P.. 1999; Deletion of the pyc gene blocks clavulanic acid biosynthesis except in glycerol-containing medium: evidence for two different genes in formation of the C3 unit. J Bacteriol181:6922–6928
    [Google Scholar]
  27. Rodríguez-García A., Santamarta I., Pérez-Redondo R., Martín J. F., Liras P.. 2006; Characterization of a two-gene operon epeRA involved in multidrug resistance in Streptomyces clavuligerus. Res Microbiol157:559–568
    [Google Scholar]
  28. Romero J., Liras P., Martín J. F.. 1984; Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Appl Microbiol Biotechnol20:318–325
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  30. Sánchez L., Braña A. F.. 1996; Cell density influences antibiotic biosynthesis in Streptomyces clavuligerus. Microbiology142:1209–1220
    [Google Scholar]
  31. Santamarta I.. 2002; Control de la expresión de los genes de biosíntesis de cefamicina C en Streptomyces clavuligerus por la proteína CcaR PhD thesis Universidad de León (León);
  32. Santamarta I., Pérez-Redondo R., Lorenzana L. M., Martín J. F., Liras P.. 2005; Different proteins bind to the butyrolactone receptor protein ARE sequence located upstream of the regulatory ccaR gene of Streptomyces clavuligerus. Mol Microbiol56:824–835
    [Google Scholar]
  33. Santamarta I., López-García M. T., Pérez-Redondo R., Koekman B., Martín J. F., Liras P.. 2007; Connecting primary and secondary metabolism: AreB, an IclR-like protein, binds the ARE ccaR sequence of S. clavuligerus and modulates leucine biosynthesis and cephamycin C and clavulanic acid production. Mol Microbiol66:511–524
    [Google Scholar]
  34. Sello J. K., Buttner M. J.. 2008; The oligoribonuclease gene in Streptomyces coelicolor is not transcriptionally or translationally coupled to adpA, a key BldA target. FEMS Microbiol Lett286:60–65
    [Google Scholar]
  35. Takano E., Tao M., Long F., Bibb M. J., Wang L., Li W., Buttner M. J., Bibb M. J., Deng Z. X., Chater K. F.. 2003; A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor. Mol Microbiol50:475–486
    [Google Scholar]
  36. Tomono A., Tsai Y., Yamazaki H., Ohnishi Y., Horinouchi S.. 2005a; Transcriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J Bacteriol187:5595–5604
    [Google Scholar]
  37. Tomono A., Tsai Y., Ohnishi Y., Horinouchi S.. 2005b; Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J Bacteriol187:6341–6353
    [Google Scholar]
  38. Trepanier N. K., Jensen S. E., Alexander D. C., Leskiw B. K.. 2002; The positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus is mistranslated in a bldA mutant. Microbiology148:643–656
    [Google Scholar]
  39. White J., Bibb M.. 1997; bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol179:627–633
    [Google Scholar]
  40. Yamazaki H., Ohnishi Y., Horinouchi S.. 2000; An A-factor-dependent extracytoplasmic function sigma factor ( σAdsA) that is essential for morphological development in Streptomyces griseus. J Bacteriol182:4596–4605
    [Google Scholar]
  41. Yamazaki H., Ohnishi Y., Horinouchi S.. 2003; Transcriptional switch on of ssgA by A-factor, which is essential for spore septum formation in Streptomyces griseus. J Bacteriol185:1273–1283
    [Google Scholar]
  42. Yamazaki H., Tomono A., Ohnishi Y., Horinouchi S.. 2004; DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol53:555–572
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035956-0
Loading
/content/journal/micro/10.1099/mic.0.035956-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error