1887

Abstract

ATCC 27064 is unable to use glucose but has genes for a glucose permease () and a glucose kinase (). Transformation of 27064 with the gene with its own promoter results in a strain able to grow on glucose. The gene of encodes a 475 amino acid glucose permease with 12 transmembrane segments. GlcP is a functional protein when expressed from the promoter and complements two different glucose transport-negative mutants. Transcription studies indicate that the promoter is very weak and does not allow growth on glucose. These results suggest that initially contained a functional glucose permease gene, like most other species, and lost the expression of this gene by adaptation to glucose-poor habitats.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035840-0
2010-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1527.html?itemId=/content/journal/micro/10.1099/mic.0.035840-0&mimeType=html&fmt=ahah

References

  1. Aharonowitz Y., Demain A. L. 1978; Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob Agents Chemother 14:159–164
    [Google Scholar]
  2. Aidoo K. A., Wong A., Alexander D. C., Rittammer R. A., Jensen S. E. 1994; Cloning, sequencing and disruption of a gene from Streptomyces clavuligerus involved in clavulanic acid biosynthesis. Gene 147:41–46
    [Google Scholar]
  3. Angell S., Schwarz E., Bibb M. J. 1992; The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6:2833–2844
    [Google Scholar]
  4. Angell S., Lewis C. G., Buttner M. J., Bibb M. J. 1994; Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 244:135–143
    [Google Scholar]
  5. Aulkemeyer P., Ebner R., Heilenmann G., Jahreis K., Schmid K., Wrieden S., Lengeler J. W. 1991; Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 5:2913–2922
    [Google Scholar]
  6. Bertram R., Schlicht M., Mahr K., Nothaft H., Saier M. H. Jr, Titgemeyer F. 2004; In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol 186:1362–1373
    [Google Scholar]
  7. Burton K. 1968; Determination of DNA concentration with diphenylamine. Methods Enzymol 12:163–166
    [Google Scholar]
  8. Chatterjee S., Vining L. C. 1981; Nutrient utilization in actinomycetes. Induction of α-glucosidases in Streptomyces venezuelae. Can J Microbiol 27:639–645
    [Google Scholar]
  9. García-Domínguez M., Martín J. F., Liras P. 1989; Characterization of sugar uptake in wild-type Streptomyces clavuligerus, which is impaired in glucose uptake, and in a glucose-utilizing mutant. J Bacteriol 171:6808–6814
    [Google Scholar]
  10. Görke B., Stülke J. 2008; Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624
    [Google Scholar]
  11. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546
    [Google Scholar]
  12. Guzmán S., Carmona A., Escalante L., Imriskova I., López R., Rodríguez-Sanoja R., Ruiz B., Servín-González L., Sánchez S., Langley E. 2005; Pleiotropic effect of the SCO2127 gene on the glucose uptake, glucose kinase activity and carbon catabolite repression in Streptomyces peucetius var. caesius. Microbiology 151:1717–1723
    [Google Scholar]
  13. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  14. Hindle Z., Smith C. P. 1994; Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 12:737–745
    [Google Scholar]
  15. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces genetics Norwich, UK: John Innes Foundation;
    [Google Scholar]
  16. Lengeler J., Auburger A. M., Mayer R., Pecher A. 1981; The phosphoenolpyruvate-dependent carbohydrate : phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K 12. Mol Gen Genet 183:163–170
    [Google Scholar]
  17. MacNeil D. J., Occi J. L., Gewain K. M., MacNeil T., Gibbons P. H., Ruby C. L., Danis S. J. 1992; Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115:119–125
    [Google Scholar]
  18. Mesak L. R., Mesak F. M., Dahl M. K. 2004; Bacillus subtilis GlcK activity requires cysteines within a motif that discriminates microbial glucokinases into two lineages. BMC Microbiol 4:6–15
    [Google Scholar]
  19. Nothaft H., Dresel D., Willimek A., Mahr K., Niederweis M., Titgemeyer F. 2003a; The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 185:7019–7023
    [Google Scholar]
  20. Nothaft H., Parche S., Kamionka A., Titgemeyer F. 2003b; In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor. J Bacteriol 185:929–937
    [Google Scholar]
  21. Paget M. S., Chamberlin L., Atrih A., Foster S. J., Buttner M. J. 1999; Evidence that the extracytoplasmic function sigma factor σE is required for normal cell wall structure in Streptomyces coelicolor A3(2. J Bacteriol 181:204–211
    [Google Scholar]
  22. Rigali S., Nothaft H., Noens E. E., Schlicht M., Colson S., Müller M., Joris B., Koerten H. K., Hopwood D. A. other authors 2006; The sugar phosphotransferase system of S. coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61:1237–1251
    [Google Scholar]
  23. Rigali S., Titgemeyer F., Barends S., Mulder S., Tomae A. W., Hopwood D. A., van Wezel G. P. 2008; Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670–675
    [Google Scholar]
  24. Rodríguez-García A., Barreiro C., Santos-Beneit F., Sola-Landa A., Martín J. F. 2007; Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a Δ phoP mutant. Proteomics 7:2410–2429
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. van Wezel G. P., Mahr K., König M., Traag A., Pimentel-Schmitt E. F., Willimek A., Titgemeyer F. 2005; GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2. Mol Microbiol 55:624–636
    [Google Scholar]
  27. van Wezel G. P., König M., Mahr K., Nothaft H., Thomae A. W., Bibb M., Titgemeyer F. 2007; A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2. J Mol Microbiol Biotechnol 12:67–74
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035840-0
Loading
/content/journal/micro/10.1099/mic.0.035840-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error