1887

Abstract

ATCC 27064 is unable to use glucose but has genes for a glucose permease () and a glucose kinase (). Transformation of 27064 with the gene with its own promoter results in a strain able to grow on glucose. The gene of encodes a 475 amino acid glucose permease with 12 transmembrane segments. GlcP is a functional protein when expressed from the promoter and complements two different glucose transport-negative mutants. Transcription studies indicate that the promoter is very weak and does not allow growth on glucose. These results suggest that initially contained a functional glucose permease gene, like most other species, and lost the expression of this gene by adaptation to glucose-poor habitats.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.035840-0
2010-05-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1527.html?itemId=/content/journal/micro/10.1099/mic.0.035840-0&mimeType=html&fmt=ahah

References

  1. Aharonowitz, Y. & Demain, A. L. ( 1978; ). Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob Agents Chemother 14, 159–164.[CrossRef]
    [Google Scholar]
  2. Aidoo, K. A., Wong, A., Alexander, D. C., Rittammer, R. A. & Jensen, S. E. ( 1994; ). Cloning, sequencing and disruption of a gene from Streptomyces clavuligerus involved in clavulanic acid biosynthesis. Gene 147, 41–46.[CrossRef]
    [Google Scholar]
  3. Angell, S., Schwarz, E. & Bibb, M. J. ( 1992; ). The glucose kinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6, 2833–2844.[CrossRef]
    [Google Scholar]
  4. Angell, S., Lewis, C. G., Buttner, M. J. & Bibb, M. J. ( 1994; ). Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 244, 135–143.
    [Google Scholar]
  5. Aulkemeyer, P., Ebner, R., Heilenmann, G., Jahreis, K., Schmid, K., Wrieden, S. & Lengeler, J. W. ( 1991; ). Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 5, 2913–2922.[CrossRef]
    [Google Scholar]
  6. Bertram, R., Schlicht, M., Mahr, K., Nothaft, H., Saier, M. H., Jr & Titgemeyer, F. ( 2004; ). In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol 186, 1362–1373.[CrossRef]
    [Google Scholar]
  7. Burton, K. ( 1968; ). Determination of DNA concentration with diphenylamine. Methods Enzymol 12, 163–166.
    [Google Scholar]
  8. Chatterjee, S. & Vining, L. C. ( 1981; ). Nutrient utilization in actinomycetes. Induction of α-glucosidases in Streptomyces venezuelae. Can J Microbiol 27, 639–645.[CrossRef]
    [Google Scholar]
  9. García-Domínguez, M., Martín, J. F. & Liras, P. ( 1989; ). Characterization of sugar uptake in wild-type Streptomyces clavuligerus, which is impaired in glucose uptake, and in a glucose-utilizing mutant. J Bacteriol 171, 6808–6814.
    [Google Scholar]
  10. Görke, B. & Stülke, J. ( 2008; ). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6, 613–624.[CrossRef]
    [Google Scholar]
  11. Gust, B., Challis, G. L., Fowler, K., Kieser, T. & Chater, K. F. ( 2003; ). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100, 1541–1546.[CrossRef]
    [Google Scholar]
  12. Guzmán, S., Carmona, A., Escalante, L., Imriskova, I., López, R., Rodríguez-Sanoja, R., Ruiz, B., Servín-González, L., Sánchez, S. & Langley, E. ( 2005; ). Pleiotropic effect of the SCO2127 gene on the glucose uptake, glucose kinase activity and carbon catabolite repression in Streptomyces peucetius var. caesius. Microbiology 151, 1717–1723.[CrossRef]
    [Google Scholar]
  13. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  14. Hindle, Z. & Smith, C. P. ( 1994; ). Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 12, 737–745.[CrossRef]
    [Google Scholar]
  15. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces genetics. Norwich, UK: John Innes Foundation.
  16. Lengeler, J., Auburger, A. M., Mayer, R. & Pecher, A. ( 1981; ). The phosphoenolpyruvate-dependent carbohydrate : phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K 12. Mol Gen Genet 183, 163–170.[CrossRef]
    [Google Scholar]
  17. MacNeil, D. J., Occi, J. L., Gewain, K. M., MacNeil, T., Gibbons, P. H., Ruby, C. L. & Danis, S. J. ( 1992; ). Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115, 119–125.[CrossRef]
    [Google Scholar]
  18. Mesak, L. R., Mesak, F. M. & Dahl, M. K. ( 2004; ). Bacillus subtilis GlcK activity requires cysteines within a motif that discriminates microbial glucokinases into two lineages. BMC Microbiol 4, 6–15.[CrossRef]
    [Google Scholar]
  19. Nothaft, H., Dresel, D., Willimek, A., Mahr, K., Niederweis, M. & Titgemeyer, F. ( 2003a; ). The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 185, 7019–7023.[CrossRef]
    [Google Scholar]
  20. Nothaft, H., Parche, S., Kamionka, A. & Titgemeyer, F. ( 2003b; ). In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor. J Bacteriol 185, 929–937.[CrossRef]
    [Google Scholar]
  21. Paget, M. S., Chamberlin, L., Atrih, A., Foster, S. J. & Buttner, M. J. ( 1999; ). Evidence that the extracytoplasmic function sigma factor σ E is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181, 204–211.
    [Google Scholar]
  22. Rigali, S., Nothaft, H., Noens, E. E., Schlicht, M., Colson, S., Müller, M., Joris, B., Koerten, H. K., Hopwood, D. A. & other authors ( 2006; ). The sugar phosphotransferase system of S. coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61, 1237–1251.[CrossRef]
    [Google Scholar]
  23. Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Tomae, A. W., Hopwood, D. A. & van Wezel, G. P. ( 2008; ). Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9, 670–675.[CrossRef]
    [Google Scholar]
  24. Rodríguez-García, A., Barreiro, C., Santos-Beneit, F., Sola-Landa, A. & Martín, J. F. ( 2007; ). Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ΔphoP mutant. Proteomics 7, 2410–2429.[CrossRef]
    [Google Scholar]
  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. van Wezel, G. P., Mahr, K., König, M., Traag, A., Pimentel-Schmitt, E. F., Willimek, A. & Titgemeyer, F. ( 2005; ). GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55, 624–636.
    [Google Scholar]
  27. van Wezel, G. P., König, M., Mahr, K., Nothaft, H., Thomae, A. W., Bibb, M. & Titgemeyer, F. ( 2007; ). A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2). J Mol Microbiol Biotechnol 12, 67–74.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.035840-0
Loading
/content/journal/micro/10.1099/mic.0.035840-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error