1887

Abstract

Autotransporters are large virulence factors secreted by Gram-negative bacteria. They are synthesized with a C-terminal domain that forms a -barrel pore in the outer membrane implicated in translocation of the upstream ‘passenger’ domain across the outer membrane. However, recent structural data suggest that the diameter of the -barrel pore is not sufficient to allow the passage of partly folded structures observed for several autotransporters. Here, we have used a stalled translocation intermediate of the autotransporter Hbp to identify components involved in insertion and translocation of the protein across the outer membrane. At this intermediate stage the -domain was not inserted and folded as an integral -barrel in the outer membrane whereas part of the passenger was surface exposed. The intermediate was copurified with the periplasmic chaperone SurA and subunits of the Bam (Omp85) complex that catalyse the insertion and assembly of outer-membrane proteins. The data suggest a critical role for this general machinery in the translocation of autotransporters across the outer membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034991-0
2009-12-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3982.html?itemId=/content/journal/micro/10.1099/mic.0.034991-0&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2: 2006.0008
    [Google Scholar]
  2. Barnard T. J., Dautin N., Lukacik P., Bernstein H. D., Buchanan S. K.. 2007; Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nat Struct Mol Biol14:1214–1220
    [Google Scholar]
  3. Behrens S., Maier R., de Cock H., Schmid F. X., Gross C. A.. 2001; The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J20:285–294
    [Google Scholar]
  4. Bernstein H. D.. 2007; Are bacterial ‘autotransporters’ really transporters?. Trends Microbiol15:441–447
    [Google Scholar]
  5. Bodelon G., Marin E., Fernandez L. A.. 2009; Role of periplasmic chaperones and BamA (YaeT/Omp85) for folding and secretion of intimin from enteropathogenic Escherichia coli strains. J Bacteriol191:5169–5179
    [Google Scholar]
  6. Bos M. P., Robert V., Tommassen J.. 2007; Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol61:191–214
    [Google Scholar]
  7. Brandon L. D., Goldberg M. B.. 2001; Periplasmic transit and disulfide bond formation of the autotransported Shigella protein IcsA. J Bacteriol183:951–958
    [Google Scholar]
  8. Charlson E. S., Werner J. N., Misra R.. 2006; Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J Bacteriol188:7186–7194
    [Google Scholar]
  9. Collin S., Guilvout I., Chami M., Pugsley A. P.. 2007; YaeT-independent multimerization and outer membrane association of secretin PulD. Mol Microbiol64:1350–1357
    [Google Scholar]
  10. Dautin N., Bernstein H. D.. 2007; Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol61:89–112
    [Google Scholar]
  11. Dautin N., Barnard T. J., Anderson D. E., Bernstein H. D.. 2007; Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism. EMBO J26:1942–1952
    [Google Scholar]
  12. Jacob-Dubuisson F., Villeret V., Clantin B., Delattre A., Saint N.. 2009; First structural insights into the TpsB/Omp85 superfamily. Biol Chem390:675–684
    [Google Scholar]
  13. Jain S., Goldberg M. B.. 2007; Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol189:5393–5398
    [Google Scholar]
  14. Jong W. S., ten Hagen-Jongman C. M., den Blaauwen T., Jan Slotboom D., Tame J. R., Wickström D., de Gier J. W., Otto B. R., Luirink J.. 2007; Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Mol Microbiol63:1524–1536
    [Google Scholar]
  15. Junker M., Besingi R. N., Clark P. L.. 2009; Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol Microbiol71:1323–1332
    [Google Scholar]
  16. Khalid S., Sansom M. S.. 2006; Molecular dynamics simulations of a bacterial autotransporter: NalP from Neisseria meningitidis. Mol Membr Biol23:499–508
    [Google Scholar]
  17. Meng G., Surana N. K., St Geme J. W. III, Waksman G.. 2006; Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J25:2297–2304
    [Google Scholar]
  18. Miller J. H.. 1992; A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Movva N. R., Nakamura K., Inouye M.. 1980; Regulatory region of the gene for the OmpA protein, a major outer membrane protein of Escherichia coli. Proc Natl Acad Sci U S A77:3845–3849
    [Google Scholar]
  20. Muller D., Benz I., Tapadar D., Buddenborg C., Greune L., Schmidt M. A.. 2005; Arrangement of the translocator of the autotransporter adhesin involved in diffuse adherence on the bacterial surface. Infect Immun73:3851–3859
    [Google Scholar]
  21. Oomen C. J., van Ulsen P., van Gelder P., Feijen M., Tommassen J., Gros P.. 2004; Structure of the translocator domain of a bacterial autotransporter. EMBO J23:1257–1266
    [Google Scholar]
  22. Otto B. R., van Dooren S. J., Dozois C. M., Luirink J., Oudega B.. 2002; Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis. Infect Immun70:5–10
    [Google Scholar]
  23. Otto B. R., Sijbrandi R., Luirink J., Oudega B., Heddle J. G., Mizutani K., Park S. Y., Tame J. R.. 2005; Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. J Biol Chem280:17339–17345
    [Google Scholar]
  24. Paschen S. A., Waizenegger T., Stan T., Preuss M., Cyrklaff M., Hell K., Rapaport D., Neupert W.. 2003; Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature426:862–866
    [Google Scholar]
  25. Purdy G. E., Fisher C. R., Payne S. M.. 2007; IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA. J Bacteriol189:5566–5573
    [Google Scholar]
  26. Robert V., Volokhina E. B., Senf F., Bos M. P., Van Gelder P., Tommassen J.. 2006; Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol4:e377
    [Google Scholar]
  27. Ruiz N., Falcone B., Kahne D., Silhavy T. J.. 2005; Chemical conditionality: a genetic strategy to probe organelle assembly. Cell121:307–317
    [Google Scholar]
  28. Ruiz N., Kahne D., Silhavy T. J.. 2006; Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol4:57–66
    [Google Scholar]
  29. Shevchenko A., Wilm M., Vorm O., Mann M.. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem68:850–858
    [Google Scholar]
  30. Silhavy T., Berman M., Enquist L.. 1984; Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Skillman K. M., Barnard T. J., Peterson J. H., Ghirlando R., Bernstein H. D.. 2005; Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter. Mol Microbiol58:945–958
    [Google Scholar]
  32. Sklar J. G., Wu T., Kahne D., Silhavy T. J.. 2007; Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev21:2473–2484
    [Google Scholar]
  33. Stegmeier J. F., Gluck A., Sukumaran S., Mantele W., Andersen C.. 2007; Characterisation of YtfM, a second member of the Omp85 family in Escherichia coli. Biol Chem388:37–46
    [Google Scholar]
  34. Strauch K. L., Johnson K., Beckwith J.. 1989; Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol171:2689–2696
    [Google Scholar]
  35. Surana N. K., Grass S., Hardy G. G., Li H., Thanassi D. G., Geme J. W. III. 2004; Evidence for conservation of architecture and physical properties of Omp85-like proteins throughout evolution. Proc Natl Acad Sci U S A101:14497–14502
    [Google Scholar]
  36. Szabady R. L., Peterson J. H., Skillman K. M., Bernstein H. D.. 2005; An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc Natl Acad Sci U S A102:221–226
    [Google Scholar]
  37. Ureta A. R., Endres R. G., Wingreen N. S., Silhavy T. J.. 2007; Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment. J Bacteriol189:446–454
    [Google Scholar]
  38. Voulhoux R., Bos M. P., Geurtsen J., Mols M., Tommassen J.. 2003; Role of a highly conserved bacterial protein in outer membrane protein assembly. Science299:262–265
    [Google Scholar]
  39. Vuong P., Bennion D., Mantei J., Frost D., Misra R.. 2008; Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J Bacteriol190:1507–1517
    [Google Scholar]
  40. Wu T., Malinverni J., Ruiz N., Kim S., Silhavy T. J., Kahne D.. 2005; Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell121:235–245
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034991-0
Loading
/content/journal/micro/10.1099/mic.0.034991-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error