1887

Abstract

In the bacterial periplasm, the reduction of nitrate to nitrite is catalysed by a periplasmic nitrate reductase (NAP) system, which is a species-dependent assembly of protein subunits encoded by the operon. The reduction of nitrate catalysed by NAP takes place in the 90 kDa NapA subunit, which contains a Mo--molybdopterin guanine dinucleotide cofactor and one [4Fe−4S] iron–sulfur cluster. A review of the operons in the genomes of 19 strains of shows that most genomes contain two operons. This is an unusual feature of this genus. The two NAP isoforms each comprise three isoform-specific subunits – NapA, a di-haem cytochrome NapB, and a maturation chaperone NapD – but have different membrane-intrinsic subunits, and have been named NAP- (NapEDABC) and NAP- (NapDAGHB). Sixteen genomes encode both NAP- and NAP-. The genome of the vigorous denitrifier OS217 encodes only NAP- and the genome of the respiratory nitrate ammonifier MR-1 encodes only NAP-. This raises the possibility that NAP- and NAP- are associated with physiologically distinct processes in the environmentally adaptable genus .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034421-0
2010-02-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/302.html?itemId=/content/journal/micro/10.1099/mic.0.034421-0&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita M., Itoh T., Katayama Y., Kuraishi H., Yamasato K.. 1992; Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J Gen Microbiol138:2275–2281
    [Google Scholar]
  2. Arnoux P., Sabaty M., Alric J., Frangioni B., Guigliarelli B., Adriano J.-M., Pignol D.. 2003; Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nat Struct Biol10:928–934
    [Google Scholar]
  3. Beliaev A. S., Thompson D. K., Fields M. W., Wu L., Lies D. P., Nealson K. H., Zhou J.. 2002; Microarray transcription profiling of a Shewanella oneidensis etrA mutant. J Bacteriol184:4612–4616
    [Google Scholar]
  4. Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J.. 1995; The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J309:983–992
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. S., Rea S. M., Nichols P. D., McMeekin T. A.. 1997; Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov.,novel species with the ability to produce eicosapentaenoic acid (20 : 5 ω3) and grow anaerobically with dissimilatory Fe(III) reduction. Int J Syst Bacteriol47:1040–1047
    [Google Scholar]
  6. Bozal N., Montes M. J., Minana-Galbis D., Manresa A., Mercade E.. 2009; Shewanella vesiculosa sp. nov., a psychrotolerant bacterium isolated from an Antarctic coastal area. Int J Syst Evol Microbiol59:336–340
    [Google Scholar]
  7. Brettar I., Christen R., Hofle M. G.. 2002; Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. Int J Syst Evol Microbiol52:2211–2217
    [Google Scholar]
  8. Brondijk T. H. C., Fiegen D., Richardson D. J., Cole J. A.. 2002; Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Mol Microbiol44:245–255
    [Google Scholar]
  9. Brondijk T. H. C., Nilavongse A., Filenko N., Richardson D. J., Cole J. A.. 2004; NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing. Biochem J379:47–55
    [Google Scholar]
  10. Burns J. L., DiChristina T. L.. 2009; Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar Typhimurium LT2. Appl Environ Microbiol75:5209–5217
    [Google Scholar]
  11. Carpentier W., De Smet L., Van Beeumen J., Brige A.. 2005; Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor. J Bacteriol187:3293–3301
    [Google Scholar]
  12. Cartron M. L., Roldán M. D., Ferguson S. J., Berks B. C., Richardson D. J.. 2002; Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases. Biochem J368:425–432
    [Google Scholar]
  13. Clarke T. A., Cole J. A., Richardson D. J., Hemmings A. M.. 2007; The crystal structure of the pentahaem c-type cytochrome NrfB and characterization of its solution-state interaction with the pentahaem nitrite reductase NrfA. Biochem J406:19–30
    [Google Scholar]
  14. Cramm R., Siddiqui R. A., Friedrich B.. 1997; Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J Bacteriol179:6769–6777
    [Google Scholar]
  15. Cruz-Garcia C., Murray A. E., Klappenbach J. A., Stewart V., Tiedje J. M.. 2007; Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J Bacteriol189:656–662
    [Google Scholar]
  16. Czjzek M., Dos Santos J.-P., Pommier J., Giordano G., Méjean V., Haser R.. 1998; Crystal structure of oxidised trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J Mol Biol284:435–447
    [Google Scholar]
  17. Delgado M. J., Bonnard N., Tresierra-ayala A., Bedmar E. J., Mueller P.. 2003; The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. Microbiology149:3395–3403
    [Google Scholar]
  18. Dias J. M., Than M. E., Humm A., Huber R., Bourenkov G. P., Bartunik H. D., Bursakov S., Calvete J., Caldeira J.. other authors 1999; Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Structure7:65–79
    [Google Scholar]
  19. Ellington M. J. K., Fosdike W. L. J., Sawers R. G., Richardson D. J., Ferguson S. J.. 2006; Regulation of the nap operon encoding the periplasmic nitrate reductase of Paracoccus pantotrophus: delineation of DNA sequences required for redox control. Arch Microbiol184:298–304
    [Google Scholar]
  20. Fredrickson J. K., Zachara J. M., Kennedy D. W., Dong H., Onstott T. C., Hinman N. W., Li S.-M.. 1998; Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta62:3239–3257
    [Google Scholar]
  21. Fredrickson J. K., Romine M. F., Beliaev A. S., Auchtung J. M., Driscoll M. E., Gardner T. S., Nealson K. H., Osterman A. L., Pinchuk G.. other authors 2008; Towards environmental systems biology of Shewanella. Nat Rev Microbiol6:592–603
    [Google Scholar]
  22. Gao H., Obraztova A., Stewart N., Popa R., Fredrickson J. K., Tiedje J. M., Nealson K. H., Zhou J.. 2006; Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int J Syst Evol Microbiol56:1911–1916
    [Google Scholar]
  23. Gao H., Yang Z. K., Barua S., Reed S. B., Romine M. F., Nealson K. H., Fredrickson J. K., Tiedje J. M., Zhou J.. 2009; Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J3:966–976
    [Google Scholar]
  24. González P. J., Correia C., Moura I., Brondino C. D., Moura J. J. G.. 2006; Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem100:1015–1023
    [Google Scholar]
  25. Gralnick J. A., Vali H., Lies D. P., Newman D. K.. 2006; Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci U S A103:4669–4674
    [Google Scholar]
  26. Grove J., Tanapongpipat S., Thomas G., Griffiths L., Crooke H., Cole J.. 1996; Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol19:467–481
    [Google Scholar]
  27. Hau H. H., Gralnick J. A.. 2007; Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol61:237–258
    [Google Scholar]
  28. Heidelberg J. F., Paulsen I. T., Nelson K. E., Gaidos E. J., Nelson W. C., Read T. D., Eisen J. A., Seshadri R., Ward N.. other authors 2002; Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol20:1118–1123
    [Google Scholar]
  29. Hettmann T., Siddiqui R. A., Frey C., Santos-Silva T., Romão M. J., Diekmann S.. 2004; Mutagenesis study on amino acids around the molybdenum centre of the periplasmic nitrate reductase from Ralstonia eutropha. Biochem Biophys Res Commun320:1211–1219
    [Google Scholar]
  30. Hille R.. 1996; The mononuclear molybdenum enzymes. Chem Rev96:2757–2816
    [Google Scholar]
  31. Hou H., Li L., Cho Y., de Figueiredo P., Han A.. 2009; Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS One4:e6570
    [Google Scholar]
  32. Hussain H., Grove J., Griffiths L., Busby S. J. W., Cole J.. 1994; A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol12:153–163
    [Google Scholar]
  33. Jepson B. J. N., Mohan S., Clarke T. A., Gates A. J., Cole J. A., Butler C. S., Butt J. N., Hemmings A. J., Richardson D. J.. 2007; Spectropotentiometric and structural analysis of the periplasmic nitrate reductase from Escherichia coli. J Biol Chem282:6425–6437
    [Google Scholar]
  34. Kern M., Simon J.. 2008; Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration. Mol Microbiol69:1137–1152
    [Google Scholar]
  35. Kim H. J., Park H. S., Hyun M. S., Chang I. S., Kim M., Kim B. H.. 2002; A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol30:145–152
    [Google Scholar]
  36. Konstantinidis K. T., Serres M. H., Romine M. F., Rodrigues J. L., Auchtung J., McCue L. A., Lipton M. S., Obraztsova A., Giometti C. S.. other authors 2009; Comparative systems biology across an evolutionary gradient within the Shewanella genus. Proc Natl Acad Sci U S A106:15909–15914
    [Google Scholar]
  37. Krause B., Nealson K. H.. 1997; Physiology and enzymology involved in denitrification by Shewanella putrefaciens. Appl Environ Microbiol63:2613–2618
    [Google Scholar]
  38. Krause A., Ramakumar A., Bartels D., Battistoni F., Bekel T., Boch J., Bohm M., Friedrich F., Hurek T.. other authors 2006; Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol24:1385–1391
    [Google Scholar]
  39. Kroneck P. M. H., Abt D. J.. 2002; Molybdenum in nitrate reducatse and nitrite oxidoreductase. In Molybdenum and Tungsten: Their Roles in Biological Processes pp369–403 Edited by Sigel A., Sigel. New York: Marcel Dekker;
    [Google Scholar]
  40. Kukimoto M., Nishiyama M., Murphy M. E. P., Turley S., Adman E. T., Horinouchi S., Beppu T.. 1994; X-ray structure and site-directed mutagenesis of a nitrite reductase from Alcaligenes faecalis S-6: roles of two copper atoms in nitrite reduction. Biochemistry33:5246–5252
    [Google Scholar]
  41. Leonardo M. R., Moser D. P., Barbieri E., Brantner C. A., MacGregor B. J., Paster B. J., Stackebrandt E., Nealson K. H.. 1999; Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int J Syst Bacteriol49:1341–1351
    [Google Scholar]
  42. Li H.-K., Temple C., Rajagopalan K. V., Schindelin H.. 2000; The 1.3 Å crystal structure of Rhodobacter sphaeroides dimethyl sulfoxide reductase reveals two distinct molybdenum coordination environments. J Am Chem Soc122:7673–7680
    [Google Scholar]
  43. Maier T. M., Myers C. R.. 2001; Isolation and characterization of a Shewanella putrefaciens MR-1 electron transport regulator etrA mutant: reassessment of the role of EtrA. J Bacteriol183:4918–4926
    [Google Scholar]
  44. Makemson J. C., Fulayfil N. R., Landry W., Van Ert L. M., Wimpee C. F., Widder E. A., Case J. F.. 1997; Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol47:1034–1039
    [Google Scholar]
  45. Malasarn D., Keeffe J. R., Newman D. K.. 2008; Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J Bacteriol190:135–142
    [Google Scholar]
  46. Marietou A., Richardson D. J., Cole J. A., Mohan S.. 2005; Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetraheme c-type cytochrome, NapM. FEMS Microbiol Lett248:217–225
    [Google Scholar]
  47. McAlpine A. S., McEwan A. G., Bailey S.. 1998; The high resolution crystal structure of DMSO reductase in complex with DMSO. J Mol Biol275:613–623
    [Google Scholar]
  48. McEwan A. G., Ridge J. P., McDevitt C. A., Hugenholtz P.. 2002; The DMSO reductase family of microbial molybdenum enzymes. Molecular properties, and role in the dissimilatory reduction of toxic elements. Geomicrobiol J19:3–21
    [Google Scholar]
  49. Meganathan R.. 2001; Ubiquinone biosynthesis in microorganisms. FEMS Microbiol Lett203:131–139
    [Google Scholar]
  50. Moura J. J. G., Brondino C. D., Trincão J., Romão M. J.. 2004; Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. J Biol Inorg Chem9:791–799
    [Google Scholar]
  51. Murphy J. N., Saltikov C. W.. 2007; The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species. J Bacteriol189:2283–2290
    [Google Scholar]
  52. Murray A. E., Lies D., Li G., Nealson K., Zhou J., Tiedje J. M.. 2001; DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc Natl Acad Sci U S A98:9853–9858
    [Google Scholar]
  53. Myers C. R., Myers J. M.. 1997; Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol179:1143–1152
    [Google Scholar]
  54. Myers J. M., Myers C. R.. 2000; Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J Bacteriol182:67–75
    [Google Scholar]
  55. Myers C. R., Nealson K. H.. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science240:1319–1321
    [Google Scholar]
  56. Najmudin S., González P. J., Trincão J., Coelho C., Mukhopadhyay A., Cerqueira N. M., Romão C. C., Moura I., Moura J. J.. other authors 2008; Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. J Biol Inorg Chem13:737–753
    [Google Scholar]
  57. Nealson K. H., Little B.. 1997; Breathing manganese and iron: solid-state respiration. Adv Appl Microbiol45:213–239
    [Google Scholar]
  58. Nealson K. H., Saffarini D.. 1994; Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol48:311–343
    [Google Scholar]
  59. Nealson K. H., Myers C. R., Wimpee B. B.. 1991; Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea. Deep Sea Res A38:S907–S920
    [Google Scholar]
  60. Nishijima M., Araki-Sakai M., Sano H.. 1997; Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods28:113–122
    [Google Scholar]
  61. Pakchung A. A. H., Simpson P. J. L., Codd R.. 2006; Life on Earth. Extremophiles continue to move the goal posts. Environ Chem3:77–93
    [Google Scholar]
  62. Park S. C., Baik K. S., Kim M. S., Kim D., Seong C. N.. 2009; Shewanella marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol59:1888–1894
    [Google Scholar]
  63. Potter L. C., Cole J. A.. 1999; Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J344:69–76
    [Google Scholar]
  64. Potter L., Angove H., Richardson D., Cole J.. 2001; Nitrate reduction in the periplasm of gram-negative bacteria. Adv Microb Physiol45:51–112
    [Google Scholar]
  65. Reyes F., Gavira M., Castillo F., Moreno-Vivian C.. 1998; Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem J331:897–904
    [Google Scholar]
  66. Richardson D. J., Berks B. C., Russell D. A., Spiro S., Taylor C. J.. 2001; Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci58:165–178
    [Google Scholar]
  67. Rodionov D. A., Dubchak I. L., Arkin A. P., Alm E. J., Gelfand M. S.. 2005; Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol1:e55
    [Google Scholar]
  68. Roldan M. D., Sears H. J., Cheesman M. R., Ferguson S. J., Thomson A. J., Berks B. C., Richardson D. J.. 1998; Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. J Biol Chem273:28785–28790
    [Google Scholar]
  69. Saffarini D. A., Nealson K. H.. 1993; Sequence and genetic characterization of etrA, an fnr analog that regulates anaerobic respiration in Shewanella putrefaciens MR-1. J Bacteriol175:7938–7944
    [Google Scholar]
  70. Saffarini D. A., Schultz R., Beliaev A.. 2003; Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J Bacteriol185:3668–3671
    [Google Scholar]
  71. Saltikov C. W., Cifuentes A., Venkateswaran K., Newman D. K.. 2003; The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol69:2800–2809
    [Google Scholar]
  72. Schwalb C., Chapman S. K., Reid G. A.. 2002; The membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in Shewanella. Biochem Soc Trans30:658–662
    [Google Scholar]
  73. Schwalb C., Chapman S. K., Reid G. A.. 2003; The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis. Biochemistry42:9491–9497
    [Google Scholar]
  74. Simon J., Gross R., Einsle O., Kroneck P. M. H., Kroger A., Klimmek O.. 2000; A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Mol Microbiol35:686–696
    [Google Scholar]
  75. Simon J., Saenger M., Schuster S. C., Gross R.. 2003; Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol Microbiol49:69–79
    [Google Scholar]
  76. Soballe B., Poole R. K.. 1999; Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology145:1817–1830
    [Google Scholar]
  77. Song W., Juhn F. S., Naiman D. Q., Konstantinidis K. T., Gardner T. S., Ward M. J.. 2008; Predicting σ28 promoters in eleven Shewanella genomes. FEMS Microbiol Lett283:223–230
    [Google Scholar]
  78. Stewart V., Bledsoe P. J., Chen L.-L., Cai A.. 2009; Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. J Bacteriol191:996–1005
    [Google Scholar]
  79. Stolz J. F., Basu P.. 2002; Evolution of nitrate reductase: molecular and structural variations on a common function. ChemBioChem3:198–206
    [Google Scholar]
  80. Stolz J. F., Basu P., Santini J. M., Oremland R. S.. 2006; Arsenic and selenium in microbial metabolism. Annu Rev Microbiol60:107–130
    [Google Scholar]
  81. Taoka A., Yoshimatsu K., Kanemori M., Fukumori Y.. 2003; Nitrate reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum MS-1: purification and sequence analyses. Can J Microbiol49:197–206
    [Google Scholar]
  82. Tavares P., Pereira A. S., Moura J. J. G., Moura I.. 2006; Metalloenzymes of the denitrification pathway. J Inorg Biochem100:2087–2100
    [Google Scholar]
  83. Tiedje J. M.. 2002; Shewanella – the environmentally versatile genome. Nat Biotechnol20:1093–1095
    [Google Scholar]
  84. Venkateswaran K., Dollhopf M. E., Aller R., Stackebrandt E., Nealson K. H.. 1998; Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol48:965–972
    [Google Scholar]
  85. Venkateswaran K., Moser D. P., Dollhopf M. E., Lies D. P., Saffarini D. A., MacGregor B. J., Ringelberg D. B., White D. C., Nishijima M.. other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol49:705–724
    [Google Scholar]
  86. Wang F., Wang P., Chen M., Xiao X.. 2004; Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Extremophiles8:165–168
    [Google Scholar]
  87. Wang F., Wang J., Jian H., Zhang B., Li S., Wang F., Zeng X., Gao L., Bartlett D. H.. other authors 2008; Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS ONE3:e1937
    [Google Scholar]
  88. Zhao J.-S., Manno D., Beaulieu C., Paquet L., Hawari J.. 2005; Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. Int J Syst Evol Microbiol55:1511–1520
    [Google Scholar]
  89. Zhao J.-S., Manno D., Leggiardo C., O'Neil D., Hawari J.. 2006; Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile. Int J Syst Evol Microbiol56:205–212
    [Google Scholar]
  90. Zhao J.-S., Manno D., Hawari J.. 2008; Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. Microbiology154:1026–1037
    [Google Scholar]
  91. Ziemke F., Höfle M. G., Lalucat J., Rosselló R.. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol48:179–186
    [Google Scholar]
  92. Zumft W. G.. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev61:533–616
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034421-0
Loading
/content/journal/micro/10.1099/mic.0.034421-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error