1887

Abstract

FinR is required for the induction of (ferredoxin-NADP reductase) under superoxide stress conditions in . Many proteobacteria harbour FinR homologues in their genome as a putative LysR-type protein. Three cysteine residues (at positions 150, 239 and 289 in FinR) are conserved in all FinR homologues. When these conserved cysteines, along with two other cysteine residues present in FinR, were individually mutated to serines, the FinR remained active, unlike SoxR and OxyR in . The results of our DNA-binding assay with cellular extracts showed that FinR binds directly to the promoter region. In order to identify the FinR functional domain for sensing superoxide stress, we employed random and site-directed mutagenesis of FinR. Among 18 single amino acid mutants, three mutants (T39A, R194A and E225A) abolished induction without any alteration of their DNA-binding ability, whereas other mutants also abrogated their DNA-binding abilities. Interestingly, two mutants (L215P and D51A) appeared to be constitutively active, regardless of superoxide stress conditions. Ferrous iron depletion, ferric iron addition and (ferredoxin) gene deletion also participate in the regulation of . These data indicate that FinR has unusual residues for redox sensing and that the redox-sensing mechanism of FinR differs from the well-known mechanisms of OxyR and SoxR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034181-0
2010-05-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1487.html?itemId=/content/journal/micro/10.1099/mic.0.034181-0&mimeType=html&fmt=ahah

References

  1. Becerra M. C., Eraso A. J., Albesa I.. 2003; Comparison of oxidative stress induced by ciprofloxacin and pyoverdin in bacteria and in leukocytes to evaluate toxicity. Luminescence18:334–340
    [Google Scholar]
  2. Cabiscol E., Tamarit J., Ros J.. 2000; Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol3:3–8
    [Google Scholar]
  3. Cadwell R. C., Joyce G. F.. 1992; Randomization of genes by PCR mutagenesis. PCR Methods Appl2:28–33
    [Google Scholar]
  4. Carrillo N., Ceccarelli E. A.. 2003; Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem270:1900–1915
    [Google Scholar]
  5. Chen H., Xu G., Zhao Y., Tian B., Lu H., Yu X., Xu Z., Ying N., Hu S., Hua Y.. 2008; A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans. PLoS One3:e1602
    [Google Scholar]
  6. Christman M. F., Storz G., Ames B. N.. 1989; OxyR, a positive regulator of hydrogen peroxide inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci U S A86:3484–3488
    [Google Scholar]
  7. Demple B.. 1996; Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon. Gene179:53–57
    [Google Scholar]
  8. Dietrich L. E., Teal T. K., Price-Whelan A., Newman D. K.. 2008; Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science321:1203–1206
    [Google Scholar]
  9. Farr S. B., Kogoma T.. 1991; Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev55:561–585
    [Google Scholar]
  10. Fuangthong M., Atichartpongkul S., Mongkolsuk S., Helmann J. D.. 2001; OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J Bacteriol183:4134–4141
    [Google Scholar]
  11. Green J., Paget M. S.. 2004; Bacterial redox sensors. Nat Rev Microbiol2:954–966
    [Google Scholar]
  12. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B.. 1990; Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A87:6181–6185
    [Google Scholar]
  13. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C.. 1988; A large family of bacterial activator proteins. Proc Natl Acad Sci U S A85:6602–6606
    [Google Scholar]
  14. Hidalgo E., Demple B.. 1994; An iron sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J13:138–146
    [Google Scholar]
  15. Hishinuma S., Yuki M., Fujimura M., Fukumori F.. 2006; OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida. Environ Microbiol8:2115–2124
    [Google Scholar]
  16. Hishinuma S., Ohtsu I., Fujimura M., Fukumori F.. 2008; OxyR is involved in the expression of thioredoxin reductase TrxB in Pseudomonas putida. FEMS Microbiol Lett289:138–145
    [Google Scholar]
  17. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59
    [Google Scholar]
  18. Imlay J. A.. 2003; Pathways of oxidative damage. Annu Rev Microbiol57:395–418
    [Google Scholar]
  19. Kalogeraki V. S., Winans S. C.. 1997; Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to genes of diverse bacteria. Gene188:69–75
    [Google Scholar]
  20. Kim J., Jeon C. O., Park W.. 2007; A green fluorescent protein-based whole-cell bioreporter for the detection of phenylacetic acid. J Microbiol Biotechnol17:1727–1732
    [Google Scholar]
  21. Kim J., Jeon C. O., Park W.. 2008; Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in Pseudomonas putida. Microbiology154:3905–3916
    [Google Scholar]
  22. Lee Y., Ahn E., Park S., Madsen E. L., Jeon C. O., Park W.. 2006a; Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J Microbiol Biotechnol16:386–390
    [Google Scholar]
  23. Lee Y., Peña-Llopis S., Kang Y. S., Shin H. D., Demple B., Madsen E. L., Jeon C. O., Park W.. 2006b; Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440. Biochem Biophys Res Commun339:1246–1254
    [Google Scholar]
  24. Liochev S. I., Hausladen A., Beyer W. F. Jr, Fridovich I.. 1994; NADPH: ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon. Proc Natl Acad Sci U S A91:1328–1331
    [Google Scholar]
  25. Morgan T. V., Lundell D. J., Burgess B. K.. 1988; Azotobacter vinelandii ferredoxin I: cloning, sequencing, and mutant analysis. J Biol Chem263:1370–1375
    [Google Scholar]
  26. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A., Fouts D. E., Gill S. R., Pop M.. other authors 2002; Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol4:799–808
    [Google Scholar]
  27. Nunoshiba T., Demple B.. 1994; A cluster of constitutive mutations affecting the C-terminus of the redox-sensitive SoxR transcriptional activator. Nucleic Acids Res22:2958–2962
    [Google Scholar]
  28. Ostrowski J., Kredich N. M.. 1989; Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-l-serine. J Bacteriol171:130–140
    [Google Scholar]
  29. Park W., Peña-Llopis S., Lee Y., Demple B.. 2006; Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli. Biochem Biophys Res Commun341:51–56
    [Google Scholar]
  30. Park B. S., Kwon Y. M., Pyla R., Boyle J. A., Jung Y. S.. 2007; E1 component of pyruvate dehydrogenase complex does not regulate the expression of NADPH-ferredoxin reductase in Azotobacter vinelandii. FEMS Microbiol Lett273:244–252
    [Google Scholar]
  31. Pomposiello P. J., Demple B.. 2000; Identification of SoxS-regulated genes in Salmonella enterica serovar typhimurium. J Bacteriol182:23–29
    [Google Scholar]
  32. Pomposiello P. J., Demple B.. 2001; Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol19:109–114
    [Google Scholar]
  33. Regnström K., Sauge-Merle S., Chen K., Burgess B. K.. 1999; In Azotobacter vinelandii, the E1 subunit of the pyruvate dehydrogenase complex binds fpr promoter region DNA and ferredoxin I. Proc Natl Acad Sci U S A96:12389–12393
    [Google Scholar]
  34. Sainsbury S., Lane L. A., Ren J., Gilbert R. J., Saunders N. J., Robinson C. V., Stuart D. I., Owens R. J.. 2009; The structure of CrgA from Neisseria meningitidis reveals a new octameric assembly state for LysR transcriptional regulators. Nucleic Acids Res37:4545–4558
    [Google Scholar]
  35. Schell M. A.. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol47:597–626
    [Google Scholar]
  36. Stadtman E. R.. 1992; Protein oxidation and aging. Science257:1220–1224
    [Google Scholar]
  37. Tao K., Makino K., Yonei S., Nakata A., Shinagawa H.. 1989; Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins. Mol Gen Genet218:371–376
    [Google Scholar]
  38. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
  39. Yeom J., Jeon C. O., Madsen E. L., Park W.. 2009a; Ferredoxin-NADP+ reductase from Pseudomonas putida functions as a ferric reductase. J Bacteriol191:1472–1479
    [Google Scholar]
  40. Yeom J., Jeon C. O., Madsen E. L., Park W.. 2009b; In vitro and in vivo interactions of ferredoxin-NADP+ reductases in Pseudomonas putida. J Biochem145:481–491
    [Google Scholar]
  41. Zheng M., Åslund F., Storz G.. 1998; Activation of the OxyR transcription factor by reversible disulfide bond formation. Science279:1718–1721
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034181-0
Loading
/content/journal/micro/10.1099/mic.0.034181-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error