1887

Abstract

Optical maps were generated for 33 uropathogenic (UPEC) isolates. For individual genomes, the I restriction fragments aligned into a unique chromosome map for each individual isolate, which was then compared with the restriction maps of all of the sequenced and strains. All of the UPEC isolates clustered separately from the strains as well as the laboratory and enterohaemorrhagic strains. Moreover, the individual strains appeared to cluster into distinct subgroups based on the dendrogram analyses. Phylogenetic grouping of these 33 strains showed that 32/33 were the B2 subgroup and 1/33 was subgroup A. To further characterize the similarities and differences among the 33 isolates, pathogenicity island (PAI), haemolysin and virulence gene comparisons were performed. A strong correlation was observed between individual subgroups and virulence factor genes as well as haemolysis activity. Furthermore, there was considerable conservation of sequenced-strain PAIs in the specific subgroups. Strains with different antibiotic-resistance patterns also appeared to sort into separate subgroups. Thus, the optical maps distinguished the UPEC strains from other strains and further subdivided the strains into distinct subgroups. This optical mapping procedure holds promise as an alternative way to subgroup all strains, including those involved in infections outside of the intestinal tract and epidemic strains with distinct patterns of antibiotic resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033977-0
2010-07-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2124.html?itemId=/content/journal/micro/10.1099/mic.0.033977-0&mimeType=html&fmt=ahah

References

  1. Barl T., Dobrindt U., Yu X., Katcoff D. J., Sompolinsky D., Bonacorsi S., Hacker J., Bachmann T. T.. 2008; Genotyping DNA chip for the simultaneous assessment of antibiotic resistance and pathogenic potential of extraintestinal pathogenic Escherichia coli. Int J Antimicrob Agents32:272–277
    [Google Scholar]
  2. Bidet P., Bonacorsi S., Clermont O., De Montille C., Brahimi N., Bingen E.. 2005; Multiple insertional events, restricted by the genetic background, have led to acquisition of pathogenicity island IIJ96-like domains among Escherichia coli strains of different clinical origins. Infect Immun73:4081–4087
    [Google Scholar]
  3. Bingen-Bidois M., Clermont O., Bonacorsi S., Terki M., Brahimi N., Barraud D., Bingen E.. 2002; Phylogenetic analysis and prevalence of urosepsis strains of Escherichia coli bearing pathogenicity island-like domains. Infect Immun70:3216–3226
    [Google Scholar]
  4. Blum G., Ott M., Lischewski A., Ritter A., Imrich H., Tschape H., Hacker J.. 1994; Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun62:606–614
    [Google Scholar]
  5. Bruant G., Maynard C., Bekal S., Gaucher I., Masson L., Brousseau R., Harel J.. 2006; Development and validation of an oligonucleotide microarray for detection of multiple virulence and antimicrobial resistance genes in Escherichia coli. Appl Environ Microbiol72:3780–3784
    [Google Scholar]
  6. Brzuszkiewicz E., Bruggemann H., Liesegang H., Emmerth M., Olschlager T., Nagy G., Albermann K., Wagner C., Buchreiser C., Emody L., Gottschalk G., Hacker J., Dobrindt U.. 2006; How to become a uropathogen: a comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A103:12879–12884
    [Google Scholar]
  7. Chen Q., Savarino S. J., Venkatesan M. M.. 2006a; Subtractive hybridization and optical mapping of the enterotoxigenic Escherichia coli H10407 chromosome: isolation of unique sequences and demonstration of significant similarity to the chromosome of E. coli K-12. Microbiology152:1041–1054
    [Google Scholar]
  8. Chen S. L., Hung C. S., Xu J., Reigstad C. S., Magrini V., Sabo A., Blasiar D., Bieri T., Meyer R. R.. & other authors (2006b). Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A103:5977–5982
    [Google Scholar]
  9. Clermont O., Bonacorsi S., Bingen E.. 2000; Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol66:4555–4558
    [Google Scholar]
  10. Clermont O., Cordevant C., Bonacorsi S., Marecat A., Lange M., Bingen E.. 2001; Automated ribotyping provides rapid phylogenetic subgroup affiliation of clinical extraintestinal pathogenic Escherichia coli strains. J Clin Microbiol39:4549–4553
    [Google Scholar]
  11. Denamur E., Bonacorsi S., Giraud A., Duriez P., Hilali F., Amorin C., Bingen E., Andremont A., Picard B.. other authors 2002; High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J Bacteriol184:605–609
    [Google Scholar]
  12. Durfee T., Nelson R., Baldwin S., Plunkett G. III, Burland V., Mau B., Petrosino J. F., Qin X., Muzny D. M.. other authors 2008; The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol190:2597–2606
    [Google Scholar]
  13. Foxman B.. 2002; Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med113 (Suppl. 1A):5S–13S
    [Google Scholar]
  14. Foxman B., Zhang L., Tallman P., Palin K., Rode C., Bloch C., Gillespie B., Marrs C. F.. 1995; Virulence characteristics of Escherichia coli causing first urinary tract infection predict risk of second infection. J Infect Dis172:1536–1541
    [Google Scholar]
  15. Foxman B., Barlow R., D'Arcy H., Gillespie B., Sobel J. D.. 2000; Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol10:509–515
    [Google Scholar]
  16. Fricke W. F., Wright M. S., Lindell A. H., Harkin D. M., Baker-Austin C., Ravel J., Stepanauskas R.. 2008; Insights into the environmental resistance gene pool from the genome sequence of the multidrug-resistant environmental isolate Escherichia coli SMS-3-5. J Bacteriol190:6779–6794
    [Google Scholar]
  17. Graziani C., Luzzi I., Corro M., Tomei F., Parisi G., Giufre M., Morabito S., Caprioli A., Cerquetti M.. 2009; Phylogenetic background and virulence genotype of ciprofloxacin-susceptible and ciprofloxacin-resistant Escherichia coli strains of human and avian origin. J Infect Dis199:1209–1217
    [Google Scholar]
  18. Guttman D. S., Dykhuizen D.. 1994; Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science266:1380–1383
    [Google Scholar]
  19. Hacker J., Knapp S., Goebel W.. 1983; Spontaneous deletions and flanking regions of the chromosomally inherited hemolysin determinant of an Escherichia coli O6 strain. J Bacteriol154:1145–1152
    [Google Scholar]
  20. Hacker J., Bender L., Ott M., Wingender J., Lund B., Marre R., Goebel W.. 1990; Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog8:213–225
    [Google Scholar]
  21. Hacker J., Blum-Oehler G., Muhldorfer I., Tschape T.. 1997; Pathogenicity islands of virulent bacteria: structure, function, and impact on microbial evolution. Mol Microbiol23:1089–1097
    [Google Scholar]
  22. Hayashi T., Hayashi T., Makino K., Ohnishi M., Kurokawa K., Ishii K., Yokoyama K., Han C. G., Ohtsubo E.. other authors 2001; Complete genome sequence of enterohemorrhagic Escherichia coli O157 : H7 and genomic comparison with a laboratory strain K-12. DNA Res8:11–22
    [Google Scholar]
  23. Henz S. R., Huson D. H., Auch A. F., Nieselt-Struwe K., Schuster S. C.. 2005; Whole-genome prokaryotic phylogeny. Bioinformatics21:2329–2335
    [Google Scholar]
  24. Hooton T. M., Stamm W. E.. 1997; Diagnosis and treatment of uncomplicated urinary tract infection. Infect Dis Clin North Am11:551–581
    [Google Scholar]
  25. Hultgren S. J., Schwan W. R., Schaeffer A. J., Duncan J. L.. 1986; Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun54:613–620
    [Google Scholar]
  26. Jin Q., Yuan Z., Xu J., Wang Y., Shen Y., Lu W., Wang J., Liu H., Yang J.. other authors 2002; Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res30:4432–4441
    [Google Scholar]
  27. Johnson J. R.. 2003; Microbial virulence determinants and the pathogenesis of urinary tract infection. Infect Dis Clin North Am17:261–278
    [Google Scholar]
  28. Johnson J. R., Brown J. J.. 1996; A novel multiply primed polymerase chain reaction assay for identification of variant papG genes encoding the Gal(alpha 1–4)Gal-binding PapG adhesins of Escherichia coli. J Infect Dis173:920–926
    [Google Scholar]
  29. Johnson J. R., Stell A. L.. 2000; Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis181:261–272
    [Google Scholar]
  30. Johnson T. J., Kariyawasam S., Wannemuehler Y., Mangiamele P., Johnson S. J., Doetkott C., Skyberg J. A., Lynne A. M., Johnson J. R., Nolan L. K.. 2007; The genome sequence of avian pathogenic Escherichia coli strain O1 : K1 : H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol189:3228–3236
    [Google Scholar]
  31. Kanamaru S., Kurazano H., Nakano M., Terai A., Ogawa O., Yamamoto S.. 2006; Subtyping of uropathogenic Escherichia coli according to the pathogenicity island encoding uropathogenic-specific protein: comparison with phylogenetic groups. Int J Urol13:754–760
    [Google Scholar]
  32. Kotewicz M. L., Jackson S. A., LeClerc J. E., Cebula T. A.. 2007; Optical maps distinguish individual strains of Escherichia coli O157 : H7. Microbiology153:1720–1723
    [Google Scholar]
  33. Kotewicz M. L., Mammel M. K., LeClerc J. E., Cebula T. A.. 2008; Opical mapping and 454 sequencing of Escherichia coli O157 : H7 isolates linked to the US 2006 spinach-associated outbreak. Microbiology154:3518–3528
    [Google Scholar]
  34. Kunin C. M.. 1994; Urinary tract infections in females. Clin Infect Dis18:1–10
    [Google Scholar]
  35. Lloyd A. L., Rasko D. A., Mobley H. L. T.. 2007; Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol189:3532–3546
    [Google Scholar]
  36. Lloyd A. L., Henderson T. A., Vigil P. D., Mobley H. L. T.. 2009; Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol191:3469–3481
    [Google Scholar]
  37. Marrs C. F., Zhang L., Foxman B.. 2005; Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes?. FEMS Microbiol Lett252:183–190
    [Google Scholar]
  38. Mobley H. L., Green D. M., Trifillis A. L., Johnson D. E., Chippendale G. R., Lockatell C. V., Jones B. D., Warren J. W.. 1990; Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun58:1281–1289
    [Google Scholar]
  39. Mulvey M. A., Schilling J. D., Hultgren S. J.. 2001; Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun69:4572–4579
    [Google Scholar]
  40. Myers E. W., Huang X.. 1992; An O (N2 log N) restriction map comparison and search algorithm. Bull Math Biol54:599–618
    [Google Scholar]
  41. Nataro J. P., Kaper J. B.. 1998; Diarrheagenic Escherichia coli. Clin Microbiol Rev11:142–201
    [Google Scholar]
  42. Nie H., Yang F., Zhang X., Yang J., Chen L., Wang J., Xiong Z., Peng J., Sun L.. other authors 2006; Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a. BMC Genomics7:173
    [Google Scholar]
  43. Ochman H., Selander R. K.. 1984; Standard reference strains of Escherichia coli from natural populations. J Bacteriol157:690–693
    [Google Scholar]
  44. Oshima K., Toh H., Ogura Y., Sasamoto H., Morita H., Park S. H., Ooka T., Iyoda S., Taylor T. D.. other authors 2008; Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult. DNA Res15:375–386
    [Google Scholar]
  45. Perna N. T., Plunkett G. III, Burland V., Mau B., Glasner J. D., Rose D. J., Mayhew G. F., Evans P. S., Gregor J.. other authors 2001; Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature409:529–533
    [Google Scholar]
  46. Pevzner P. A., Tang H., Waterman M. S.. 2001; An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci U S A98:9748–9753
    [Google Scholar]
  47. Piatti G., Mannini A., Balistreri M., Schito A. M.. 2008; Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J Clin Microbiol46:480–487
    [Google Scholar]
  48. Picard B., Garcia J. S., Gouriou S., Duriez P., Brahimi N., Bingen E., Elion J., Denamur E.. 1999; The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun67:546–553
    [Google Scholar]
  49. Pupo G. M., Karaolis D. K., Lan R., Reeves P. R.. 1997; Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun65:2685–2692
    [Google Scholar]
  50. Pupo G. M., Lan R., Reeves P. R.. 2000; Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci U S A97:10567–10572
    [Google Scholar]
  51. Rasko D. A., Rosovitz M. J., Myers G. S., Mongodin E. F., Fricke W. F., Gajer P., Crabtree J., Sebaihia M., Thomson N. R.. other authors 2008; The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol190:6881–6893
    [Google Scholar]
  52. Rijavec M., Erjavec M. S., Avgustino J. A., Reissbrodt R., Pruth A., Krizan-Hergouth V., Zgur-Bertok D.. 2006; High prevalence of multidrug resistance and random distribution of mobile genetic elements among uropathogenic Escherichia coli (UPEC) of the four major phylogenetic groups. Curr Microbiol53:158–162
    [Google Scholar]
  53. Rowe-Magnus A. D., Davies J., Mazel D.. 2002; Impact of integrons and transposons on the evolution of resistance and virulence. Curr Top Microbiol Immunol264:167–188
    [Google Scholar]
  54. Sabate M., Moreno E., Perez T., Andreu A., Prats G.. 2006; Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clin Microbiol Infect12:880–886
    [Google Scholar]
  55. Schaeffer A. J., Schwan W. R., Hultgren S. J., Duncan J. L.. 1987; Relationship of type 1 pilus expression in Escherichia coli to ascending urinary tract infections in mice. Infect Immun55:373–380
    [Google Scholar]
  56. Selander R. K., Caugant D. A., Whittam T. S.. 1987; Genetic structure and variation in natural populations of Escherichia coli. In Escherichia Coli and Salmonella Typhimurium: Cellular and Molecular Biology pp1625–1648 Edited by Ingraham J. L., Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  57. Takahashi A., Kanamaru S., Kurazono H., Kunishima Y., Tsukamoto T., Ogawa O., Yamamoto S.. 2006; Escherichia coli isolates associated with uncomplicated and complicated cystitis and asymptomatic bacteruria possess similar phylogenies, virulence genes, and O-serogroup profiles. J Clin Microbiol44:4589–4592
    [Google Scholar]
  58. Tartof S. Y., Solberg O. D., Manges A. R., Riley L. W.. 2005; Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J Clin Microbiol43:5860–5864
    [Google Scholar]
  59. Tseng C. C., Huang J. J., Ko W. C., Yan J. J., Wu J. J.. 2001; Decreased predominance of papG class II allele in Escherichia coli strains isolated from adults with acute pyelonephritis and urinary tract abnormalities. J Urol166:1643–1646
    [Google Scholar]
  60. Waterman M. S., Smith T. F., Katcher H. L.. 1984; Algorithms for restriction map comparisons. Nucleic Acids Res12:237–242
    [Google Scholar]
  61. Wei J., Goldberg M. B., Burland V., Venkatesan M. M., Deng W., Fournier G., Mayhew G. F., Plunkett G. III, Rose D. J.. other authors 2003; Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun71:2775–2786
    [Google Scholar]
  62. Welch R. A., Burland V., Plunkett G. III, Redford P., Roesch P., Rasko D., Buckles E. L., Liou S.-R., Boutin A.. other authors 2002; Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A99:17020–17024
    [Google Scholar]
  63. Yamamoto S., Terai A., Yuri K., Kurazono H., Takeda Y., Yoshida O.. 1995; Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol12:85–90
    [Google Scholar]
  64. Yang F., Yang J., Zhang X., Chen L., Jiang Y., Yan Y., Tang X., Wang J., Xiong Z.. other authors 2005; Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res33:6445–6458
    [Google Scholar]
  65. Yu X., Susa M., Knabbe C., Schmid R. D., Bachmann T. T.. 2004; Development and validation of a diagnostic DNA microarray to detect quinolone-resistant Escherichia coli among clinical isolates. J Clin Microbiol42:4083–4091
    [Google Scholar]
  66. Zhang L., Foxman B., Manning S. M., Tallman P., Marrs C. F.. 2000; Molecular epidemiologic approaches to urinary tract infection gene discovery in uropathogenic Escherichia coli. Infect Immun68:2009–2015
    [Google Scholar]
  67. Zhou S., Kile A., Bechner M., Place M., Kvikstad E., Deng W., Wei J., Severin J., Runnheim R.. other authors 2004; Single-molecule approach to bacterial genomic comparisons via optical mapping. J Bacteriol186:7773–7782
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033977-0
Loading
/content/journal/micro/10.1099/mic.0.033977-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error