1887

Abstract

is an oral spirochaete that has been strongly associated with chronic periodontitis. The bacterium exists as part of a dense biofilm (subgingival dental plaque) accreted to the tooth. To determine gene products important for persistence as a biofilm we developed a continuous-culture biofilm model and conducted a genome-wide transcriptomic analysis of biofilm and planktonic cells. A total of 126 genes were differentially expressed with a fold change of 1.5 or greater. This analysis identified the upregulation of putative prophage genes in the 35405 genome. Intact bacteriophage particles were isolated from and circular phage DNA was detected by PCR analysis. This represents the first, to our knowledge, functional bacteriophage isolated from , which we have designated φtd1. In biofilm cells there was also an upregulation of genes encoding several virulence factors, toxin–antitoxin systems and a family of putative transposases. Together, these data indicate that there is a higher potential for genetic mobility in when growing as a biofilm and that these systems are important for the biofilm persistence and therefore virulence of this bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033654-0
2010-03-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/774.html?itemId=/content/journal/micro/10.1099/mic.0.033654-0&mimeType=html&fmt=ahah

References

  1. Alm E. J., Huang K. H., Price M. N., Koche R. P., Keller K., Dubchak I. L., Arkin A. P.. 2005; The MicrobesOnline Web site for comparative genomics. Genome Res15:1015–1022
    [Google Scholar]
  2. Bamford C. V., Fenno J. C., Jenkinson H. F., Dymock D.. 2007; The chymotrypsin-like protease complex of Treponema denticola ATCC 35405 mediates fibrinogen adherence and degradation. Infect Immun75:4364–4372
    [Google Scholar]
  3. Bhagwat A. A., Phadke R. P., Wheeler D., Kalantre S., Gudipati M., Bhagwat M.. 2003; Computational methods and evaluation of RNA stabilization reagents for genome-wide expression studies. J Microbiol Methods55:399–409
    [Google Scholar]
  4. Boles B. R., Thoendel M., Singh P. K.. 2004; Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A101:16630–16635
    [Google Scholar]
  5. Bond J. P., Francklyn C.. 2000; Proteobacterial histidine-biosynthetic pathways are paraphyletic. J Mol Evol50:339–347
    [Google Scholar]
  6. Brown J. R., Douady C. J., Italia M. J., Marshall W. E., Stanhope M. J.. 2001; Universal trees based on large combined protein sequence data sets. Nat Genet28:281–285
    [Google Scholar]
  7. Chan E. C. S., Siboo R., Touyz L. Z. G., Qiu Y., Klitorinos A.. 1993; A successful method for quantifying viable oral anaerobic spirochetes. Oral Microbiol Immunol8:80–83
    [Google Scholar]
  8. Chan E. C., De Ciccio A., McLaughlin R., Klitorinos A., Siboo R.. 1997; An inexpensive solid medium for obtaining colony-forming units of oral spirochetes. Oral Microbiol Immunol12:372–376
    [Google Scholar]
  9. Chu L., Kennell W., Holt S. C.. 1994; Characterization of hemolysis and hemoxidation activities by Treponema denticola. Microb Pathog16:183–195
    [Google Scholar]
  10. Dashper S. G., Ang C. S., Veith P. D., Mitchell H. L., Lo A. W., Seers C. A., Walsh K. A., Slakeski N., Chen D.. other authors 2009; Response of Porphyromonas gingivalis to heme limitation in continuous culture. J Bacteriol191:1044–1055
    [Google Scholar]
  11. Demirkan I., Williams H. F., Dhawi A., Carter S. D., Winstanley C., Bruce K. D., Hart C. A.. 2006; Characterization of a spirochaete isolated from a case of bovine digital dermatitis. J Appl Microbiol101:948–955
    [Google Scholar]
  12. Eggers C. H., Samuels D. S.. 1999; Molecular evidence for a new bacteriophage of Borrelia burgdorferi. J Bacteriol181:7308–7313
    [Google Scholar]
  13. Eggers C. H., Casjens S., Hayes S. F., Garon C. F., Damman C. J., Oliver D. B., Samuels D. S.. 2000; Bacteriophages of spirochetes. J Mol Microbiol Biotechnol2:365–373
    [Google Scholar]
  14. Ellen R. P., Galimanas V. B.. 2005; Spirochetes at the forefront of periodontal infections. Periodontol200038:13–32
    [Google Scholar]
  15. Fenno J. C., Hannam P. M., Leung W. K., Tamura M., Uitto V.-J., McBride B. C.. 1998; Cytopathic effects of the major surface protein and the chymotrypsinlike protease of Treponema denticola. Infect Immun66:1869–1877
    [Google Scholar]
  16. Fineran P. C., Blower T. R., Foulds I. J., Humphreys D. P., Lilley K. S., Salmond G. P.. 2009; The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc Natl Acad Sci U S A106:894–899
    [Google Scholar]
  17. Gerdes K., Christensen S. K., Lobner-Olesen A.. 2005; Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol3:371–382
    [Google Scholar]
  18. Grenier D., Uitto V. J., McBride B. C.. 1990; Cellular location of a Treponema denticola chymotrypsinlike protease and importance of the protease in migration through the basement membrane. Infect Immun58:347–351
    [Google Scholar]
  19. Humphrey S. B., Neil T. B. S., Jensen S.. 1995; Mitomycin C induction of bacteriophages from Serpulina hyodysenteriae and Serpulina innocens. FEMS Microbiol Lett134:97–101
    [Google Scholar]
  20. Humphrey S. B., Stanton T. B., Jensen N. S., Zuerner R. L.. 1997; Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J Bacteriol179:323–329
    [Google Scholar]
  21. Ibba M., Morgan S., Curnow A. W., Pridmore D. R., Vothknecht U. C., Gardner W., Lin W., Woese C. R., Soll D.. 1997; A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science278:1119–1122
    [Google Scholar]
  22. Kim Y., Wang X., Ma Q., Zhang X. S., Wood T. K.. 2009; Toxin–antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol191:1258–1267
    [Google Scholar]
  23. Kolenbrander P. E., Andersen R. N., Blehert D. S., Egland P. G., Foster J. S., Palmer R. J. Jr. 2002; Communication among oral bacteria. Microbiol Mol Biol Rev66:486–505
    [Google Scholar]
  24. Krupka H. I., Huber R., Holt S. C., Clausen T.. 2000; Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5′-phosphate-dependent protein acting as a haemolytic enzyme. EMBO J19:3168–3178
    [Google Scholar]
  25. Leschine S. B., Canale-Parola E.. 1980; Rifampin as a selective agent for isolation of oral spirochetes . J Clin Microbiol12:792–795
    [Google Scholar]
  26. Lo A. W., Seers C. A., Boyce J. D., Dashper S. G., Slakeski N., Lissel J. P., Reynolds E. C.. 2009; Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells. BMC Microbiol9:18
    [Google Scholar]
  27. Orth R., O'Brien-Simpson N., Dashper S., Walsh K., Reynolds E.. 2010; An efficient method for enumerating oral spirochetes using flow cytometry. J Microbiol Methods80:123–128
    [Google Scholar]
  28. Ramanculov E., Young R.. 2001; An ancient player unmasked: T4 rl encodes a t-specific antiholin. Mol Microbiol41:575–583
    [Google Scholar]
  29. Resch A., Fehrenbacher B., Eisele K., Schaller M., Götz F.. 2005; Phage release from biofilm and planktonic Staphylococcus aureus cells. FEMS Microbiol Lett252:89–96
    [Google Scholar]
  30. Rice S. A., Tan C. H., Mikkelsen P. J., Kung V., Woo J., Tay M., Hauser A., McDougald D., Webb J. S., Kjelleberg S.. 2009; The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J3:271–282
    [Google Scholar]
  31. Rosen G., Sela M. N., Naor R., Halabi A., Barak V., Shapira L.. 1999; Activation of murine macrophages by lipoprotein and lipooligosaccharide of Treponema denticola. Infect Immun67:1180–1186
    [Google Scholar]
  32. Saint Girons I., Margarita D., Amouriaux P., Baranton G.. 1990; First isolation of bacteriophages for a spirochaete: potential genetic tools for Leptospira. Res Microbiol141:1131–1138
    [Google Scholar]
  33. Schultz C. P., Wolf V., Lange R., Mertens E., Wecke J., Naumann D., Zahringer U.. 1998; Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola. Functioning permeation barrier without lipopolysaccharides . J Biol Chem273:15661–15666
    [Google Scholar]
  34. Seshadri R., Myers G. S. A., Tettelin H., Eisen J. A., Heidelberg J. F., Dodson R. J., Davidsen T. M., DeBoy R. T., Fouts D. E.. other authors 2004; Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A101:5646–5651
    [Google Scholar]
  35. Setubal J. C., Reis M., Matsunaga J., Haake D. A.. 2006; Lipoprotein computational prediction in spirochaetal genomes. Microbiology152:113–121
    [Google Scholar]
  36. Sevin E. W., Barloy-Hubler F.. 2007; RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol8:R155
    [Google Scholar]
  37. Shockley K. R., Scott K. L., Pysz M. A., Conners S. B., Johnson M. R., Montero C. I., Wolfinger R. D., Kelly R. M.. 2005; Genome-wide transcriptional variation within and between steady states for continuous growth of the hyperthermophile Thermotoga maritima. Appl Environ Microbiol71:5572–5576
    [Google Scholar]
  38. Smyth G. K.. 2005; Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor pp397–420 Edited by Gentleman R., Carey V. P., Huber W., Irizarry R. A., Dudoit S.. New York: Springer;
  39. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L. Jr. 1998; Microbial complexes in subgingival plaque. J Clin Periodontol25:134–144
    [Google Scholar]
  40. Summer E. J., Berry J., Tran T. A. T., Niu L., Struck D. K., Young R.. 2007; Rz/ Rz1 lysis gene equivalents in phages of Gram-negative hosts. J Mol Biol373:1098–1112
    [Google Scholar]
  41. Tatusov R. L., Fedorova N., Jackson J., Jacobs A. R., Kiryutin B., Koonin E. V., Krylov D. M., Mazumder R., Mekhedov S. L.. other authors 2003; The COG database: an updated version includes eukaryotes. BMC Bioinformatics4:41
    [Google Scholar]
  42. Uetake H.. 1979; The origin of conversion genes. In Molecular Basis of Host/Virus Interactions pp365–377 Edited by Chakravarty M. Princeton, NJ: Science Press;
  43. Uitto V. J., Pan Y. M., Leung W. K., Larjava H., Ellen R. P., Finlay B. B., McBride B. C.. 1995; Cytopathic effects of Treponema denticola chymotrypsin-like proteinase on migrating and stratified epithelial cells. Infect Immun63:3401–3410
    [Google Scholar]
  44. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F.. 2002; Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol3: RESEARCH0034
    [Google Scholar]
  45. Vesey P. M., Kuramitsu H. K.. 2004; Genetic analysis of Treponema denticola ATCC 35405 biofilm formation. Microbiology150:2401–2407
    [Google Scholar]
  46. Webb J. S., Givskov M., Kjelleberg S.. 2003; Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol6:578–585
    [Google Scholar]
  47. Wolf Y. I., Rogozin I., Grishin N., Tatusov R., Koonin E.. 2001; Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol1:8
    [Google Scholar]
  48. Yamaguchi Y., Inouye M.. 2009; mRNA interferases, sequence-specific endoribonucleases from the toxin–antitoxin systems. Prog Mol Biol Transl Sci85:467–500
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033654-0
Loading
/content/journal/micro/10.1099/mic.0.033654-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error