1887

Abstract

Outer membrane proteins of the Gram-negative organism play a significant role in membrane permeability, antibiotic resistance, nutrient uptake, and virulence in the infection site. In this study, we show that the . outer membrane protein OprQ, a member of the OprD superfamily, is involved in the binding of human fibronectin (Fn). Some members of the OprD subfamily have been reported to be important in the uptake of nutrients from the environment. Comparison of wild-type and mutant strains of . revealed that inactivation of the gene does not reduce the growth rate. Although it does not appear to be involved in nutrient uptake, an increased doubling time was reproducibly observed with the loss of OprQ in . . Utilizing an transcriptional fusion, we determined that the PA2760 gene, encoding OprQ, was upregulated under conditions of decreased iron and magnesium. This upregulation appears to occur in early exponential phase. Insertional inactivation of PA2760 in the wild-type background did not produce a significant increase in resistance to any antibiotic tested, a phenotype that is typical of OprD family members. Interestingly, the expression of OprQ in the Δ PAO1 mutant resulted in increased sensitivity to certain antibiotics. These findings suggest that OprQ is under dual regulation with other . genes. Intact . cells are capable of binding human Fn. We found that loss of OprQ resulted in a reduction of binding to plasmatic Fn . Finally, we present a discussion of the possible role of the outer membrane protein OprQ in adhesion to epithelial cells, thereby increasing colonization and subsequently enhancing lung destruction by

Keyword(s): Fn, fibronectin
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.033472-0
2010-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1415.html?itemId=/content/journal/micro/10.1099/mic.0.033472-0&mimeType=html&fmt=ahah

References

  1. Andrews, J. M. ( 2001; ). Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48 (suppl. 1), 5–16.[CrossRef]
    [Google Scholar]
  2. Brok, R., Van Gelder, P., Winterhalter, M., Ziese, U., Koster, A. J., de Cock, H., Koster, M., Tommassen, J. & Bitter, W. ( 1999; ). The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. J Mol Biol 294, 1169–1179.[CrossRef]
    [Google Scholar]
  3. Deretic, V., Chandrasekharappa, S., Gill, J. F., Chatterjee, D. K. & Chakrabarty, A. M. ( 1987; ). A set of cassettes and improved vectors for genetic and biochemical characterization of Pseudomonas aeruginosa. Gene 57, 61–72.[CrossRef]
    [Google Scholar]
  4. DiGiandomenico, A., Rao, J., Harcher, K., Zaidi, T. S., Gardner, J., Neely, A. N., Pier, G. B. & Goldberg, J. B. ( 2007; ). Intranasal immunization with heterologously expressed polysaccharide protects against multiple Pseudomonas aeruginosa infections. Proc Natl Acad Sci U S A 104, 4624–4629.[CrossRef]
    [Google Scholar]
  5. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  6. Ganz, T. ( 2009; ). Iron in innate immunity: starve the invaders. Curr Opin Immunol 21, 63–67.[CrossRef]
    [Google Scholar]
  7. Hancock, R. E. & Brinkman, F. S. ( 2002; ). Function of pseudomonas porins in uptake and efflux. Annu Rev Microbiol 56, 17–38.[CrossRef]
    [Google Scholar]
  8. Jaouen, T., Coquet, L., Marvin-Guy, L., Orange, N., Chevalier, S. & De, E. ( 2006; ). Functional characterization of Pseudomonas fluorescens OprE and OprQ membrane proteins. Biochem Biophys Res Commun 346, 1048–1052.[CrossRef]
    [Google Scholar]
  9. Joh, D., Wann, E. R., Kreikemeyer, B., Speziale, P. & Hook, M. ( 1999; ). Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol 18, 211–223.[CrossRef]
    [Google Scholar]
  10. Konyecsni, W. M. & Deretic, V. ( 1988; ). Broad-host-range plasmid and M13 bacteriophage-derived vectors for promoter analysis in Escherichia coli and Pseudomonas aeruginosa. Gene 74, 375–386.[CrossRef]
    [Google Scholar]
  11. Lau, G. W., Ran, H., Kong, F., Hassett, D. J. & Mavrodi, D. ( 2004; ). Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 72, 4275–4278.[CrossRef]
    [Google Scholar]
  12. Lister, P. D. ( 2002; ). Chromosomally-encoded resistance mechanisms of Pseudomonas aeruginosa: therapeutic implications. Am J Pharmacogenomics 2, 235–243.[CrossRef]
    [Google Scholar]
  13. Martin, D. W., Holloway, B. W. & Deretic, V. ( 1993; ). Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 175, 1153–1164.
    [Google Scholar]
  14. Martinez, A., Ostrovsky, P. & Nunn, D. N. ( 1998; ). Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion. Mol Microbiol 28, 1235–1246.[CrossRef]
    [Google Scholar]
  15. McPhee, J. B., Tamber, S., Bains, M., Maier, E., Gellatly, S., Lo, A., Benz, R. & Hancock, R. E. ( 2009; ). The major outer membrane protein OprG of Pseudomonas aeruginosa contributes to cytotoxicity and forms an anaerobically regulated, cation-selective channel. FEMS Microbiol Lett 296, 241–247.[CrossRef]
    [Google Scholar]
  16. Michel, G. P., Durand, E. & Filloux, A. ( 2007; ). XphA/XqhA, a novel GspCD subunit for type II secretion in Pseudomonas aeruginosa. J Bacteriol 189, 3776–3783.[CrossRef]
    [Google Scholar]
  17. Muller, M., Li, Z. & Maitz, P. K. ( 2009; ). Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: role for p38 mitogen-activated protein kinase. Burns 35, 500–508.[CrossRef]
    [Google Scholar]
  18. Okamoto, K., Gotoh, N., Tsujimoto, H., Yamada, H., Yoshihara, E., Nakae, T. & Nishino, T. ( 1999; ). Molecular cloning and characterization of the oprQ gene coding for outer membrane protein OprE3 of Pseudomonas aeruginosa. Microbiol Immunol 43, 297–301.[CrossRef]
    [Google Scholar]
  19. Ozawa, Y. & Mizushima, S. ( 1983; ). Regulation of outer membrane porin protein synthesis in Escherichia coli K-12: ompF regulates the expression of ompC. J Bacteriol 154, 669–675.
    [Google Scholar]
  20. Porto, G. & De Sousa, M. ( 2007; ). Iron overload and immunity. World J Gastroenterol 13, 4707–4715.
    [Google Scholar]
  21. Rada, B., Lekstrom, K., Damian, S., Dupuy, C. & Leto, T. L. ( 2008; ). The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181, 4883–4893.[CrossRef]
    [Google Scholar]
  22. Ran, H., Hassett, D. J. & Lau, G. W. ( 2003; ). Human targets of Pseudomonas aeruginosa pyocyanin. Proc Natl Acad Sci U S A 100, 14315–14320.[CrossRef]
    [Google Scholar]
  23. Rebière-Huët, J., Di Martino, P., Gallet, O. & Hulen, C. ( 1999; ). Interactions of the Pseudomonas aeruginosa outer membrane proteins with plasma fibronectins. Bacterial adhesin investigation. C R Acad Sci III 322, 1071–1080.[CrossRef]
    [Google Scholar]
  24. Rebière-Huët, J., Guérillon, J., Pimenta, A. L., Di Martino, P., Orange, N. & Hulen, C. ( 2002; ). Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins. FEMS Microbiol Lett 215, 121–126.[CrossRef]
    [Google Scholar]
  25. Robert, V., Filloux, A. & Michel, G. P. ( 2005; ). Role of XcpP in the functionality of the Pseudomonas aeruginosa secreton. Res Microbiol 156, 880–886.[CrossRef]
    [Google Scholar]
  26. Roman, J., Rivera, H. N., Roser-Page, S., Sitaraman, S. V. & Ritzenthaler, J. D. ( 2006; ). Adenosine induces fibronectin expression in lung epithelial cells: implications for airway remodeling. Am J Physiol Lung Cell Mol Physiol 290, L317–L325.
    [Google Scholar]
  27. Sadikot, R. T., Blackwell, T. S., Christman, J. W. & Prince, A. S. ( 2005; ). Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 171, 1209–1223.[CrossRef]
    [Google Scholar]
  28. Schnaitman, C. A. & McDonald, G. A. ( 1984; ). Regulation of outer membrane protein synthesis in Escherichia coli K-12: deletion of ompC affects expression of the OmpF protein. J Bacteriol 159, 555–563.
    [Google Scholar]
  29. Schweizer, H. P. & Hoang, T. T. ( 1995; ). An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158, 15–22.[CrossRef]
    [Google Scholar]
  30. Smith, A. W. & Iglewski, B. H. ( 1989; ). Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res 17, 10509 [CrossRef]
    [Google Scholar]
  31. Strateva, T. & Yordanov, D. ( 2009; ). Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 58, 1133–1148.[CrossRef]
    [Google Scholar]
  32. Tamber, S. & Hancock, R. E. ( 2003; ). On the mechanism of solute uptake in Pseudomonas. Front Biosci 8, s472–s483.[CrossRef]
    [Google Scholar]
  33. Tamber, S., Ochs, M. M. & Hancock, R. E. ( 2006; ). Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa. J Bacteriol 188, 45–54.[CrossRef]
    [Google Scholar]
  34. Traub, W. H. & Leonhard, B. ( 1994; ). Agar disk diffusion (Bauer–Kirby) tests with various fastidious and nonfastidious reference (ATCC) strains: comparison of several agar media. Chemotherapy 40, 374–383.[CrossRef]
    [Google Scholar]
  35. Usher, L. R., Lawson, R. A., Geary, I., Taylor, C. J., Bingle, C. D., Taylor, G. W. & Whyte, M. K. ( 2002; ). Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 168, 1861–1868.[CrossRef]
    [Google Scholar]
  36. Wagner, V. E. & Iglewski, B. H. ( 2008; ). P. aeruginosa biofilms in CF Infection. Clin Rev Allergy Immunol 35, 124–134.[CrossRef]
    [Google Scholar]
  37. Wilhelm, S., Tommassen, J. & Jaeger, K. E. ( 1999; ). A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181, 6977–6986.
    [Google Scholar]
  38. Wolter, D. J., Smith-Moland, E., Goering, R. V., Hanson, N. D. & Lister, P. D. ( 2004; ). Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. Diagn Microbiol Infect Dis 50, 43–50.[CrossRef]
    [Google Scholar]
  39. Wu, L., Estrada, O., Zaborina, O., Bains, M., Shen, L., Kohler, J. E., Patel, N., Musch, M. W., Chang, E. B. & other authors ( 2005; ). Recognition of host immune activation by Pseudomonas aeruginosa. Science 309, 774–777.[CrossRef]
    [Google Scholar]
  40. Yamano, Y., Nishikawa, T. & Komatsu, Y. ( 1993; ). Cloning and nucleotide sequence of anaerobically induced porin protein E1 (OprE) of Pseudomonas aeruginosa PAO1. Mol Microbiol 8, 993–1004.[CrossRef]
    [Google Scholar]
  41. Yamano, Y., Nishikawa, T. & Komatsu, Y. ( 1998; ). Involvement of the RpoN protein in the transcription of the oprE gene in Pseudomonas aeruginosa. FEMS Microbiol Lett 162, 31–37.[CrossRef]
    [Google Scholar]
  42. Yoshida, T., Qin, L., Egger, L. A. & Inouye, M. ( 2006; ). Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J Biol Chem 281, 17114–17123.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.033472-0
Loading
/content/journal/micro/10.1099/mic.0.033472-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error