1887

Abstract

A cork oak endophytic strain of , previously selected for its antagonistic potential against various fungal pathogens involved in oak decline, was screened for the production of bioactive secondary metabolites. From liquid culture a mixture of polypeptide antibiotics (peptaibols) belonging to the paracelsin family was isolated and characterized. This peptide mixture was purified by column chromatography and preparative TLC on silica gel, and separated by analytical HPLC. It was analysed by MALDI-TOF MS and nano-ESI-QTOF MS. Tandem mass experiments were performed to determine the amino acid sequences based on the fragmentation pattern of selected parent ions. The mixture comprised 20-residue peptides with C-terminal phenylalaninol and N-terminal acetylation. Twenty-eight amino acid sequences were identified, and amino acid exchanges were located in positions 6, 9, 12 and 17. Among them, seven sequences are new as compared to those reported in the database specifically for peptaibols and in the literature. In addition, we obtained experimental evidence suggesting the existence of non-covalent dimeric forms (homo- and hetero-) of the various peptaibol species. The peptide mixture showed strong antifungal activity toward seven important forest tree pathogens, and it was highly toxic in an (brine shrimp) bioassay. These results emphasize the cryptic role of endophytic fungi as a source of novel bioactive natural products and biocontrol agents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030916-0
2009-10-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3371.html?itemId=/content/journal/micro/10.1099/mic.0.030916-0&mimeType=html&fmt=ahah

References

  1. Bailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., Vinyard, B. T. & Holmes, K. A. ( 2008; ). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46, 24–35.[CrossRef]
    [Google Scholar]
  2. Bakry, M. & Abourouh, M. ( 1995; ). Dépérissement du chêne-liège au Maroc: état des connaissances et perspectives. IOBC WPRS Bull 18, 50–55.
    [Google Scholar]
  3. Campanile, G., Ruscelli, A. & Luisi, N. ( 2007; ). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. Eur J Plant Pathol 117, 237–246.[CrossRef]
    [Google Scholar]
  4. Chugh, J. K. & Wallace, B. A. ( 2001; ). Models for ion channels. Biochem Soc Trans 29, 565–570.[CrossRef]
    [Google Scholar]
  5. Daniel, J. F. & Filho, E. R. ( 2007; ). Peptaibols of Trichoderma. Nat Prod Rep 24, 1128–1141.[CrossRef]
    [Google Scholar]
  6. Degenkolb, T., Dieckmann, R., Nielsen, K. F., Gräfenhan, T., Theis, C., Zafari, D., Chaverri, P., Ismaiel, A., Brückner, H. & other authors ( 2008; ). The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 7, 177–219.[CrossRef]
    [Google Scholar]
  7. Dempsey, C. E., Ueno, S. & Avison, M. B. ( 2003; ). Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42, 402–409.[CrossRef]
    [Google Scholar]
  8. Evans, H. C., Holmes, K. A. & Thomas, S. E. ( 2003; ). Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2, 149–160.[CrossRef]
    [Google Scholar]
  9. Favilla, M., Macchia, L., Gallo, A. & Altomare, C. ( 2006; ). Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina and Daphnia magna) invertebrate bioassays. Food Chem Toxicol 44, 1922–1931.[CrossRef]
    [Google Scholar]
  10. Franceschini, A., Linaldeddu, B. T. & Marras, F. ( 2005; ). Occurrence and distribution of fungal endophytes in declining cork oak forests in Sardinia (Italy). IOBC WPRS Bull 28, 67–74.
    [Google Scholar]
  11. Gunatilaka, A. A. L. ( 2006; ). Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69, 509–526.[CrossRef]
    [Google Scholar]
  12. Gusman, J. & Vanhalen, M. ( 2000; ). Endophytic fungi: an underexploited source of biologically active secondary metabolites. Recent Res Dev Phytochem 4, 187–206.
    [Google Scholar]
  13. Harman, G. E. ( 2000; ). Myths and dogmas of biocontrol: changes in perceptions derived from research in Trichoderma harzianum T-22. Plant Dis 84, 377–393.[CrossRef]
    [Google Scholar]
  14. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. ( 2004; ). Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2, 43–56.[CrossRef]
    [Google Scholar]
  15. Holmes, K. A., Schroers, H. J., Thomas, S. E., Evans, H. C. & Samuels, G. J. ( 2004; ). Taxonomy and biocontrol of a new species of Trichoderma from the Amazon basin of South America. Mycol Prog 3, 199–210.[CrossRef]
    [Google Scholar]
  16. Horst, L. E., Locke, J., Krause, C. R., McMahon, R. W., Madden, L. V. & Hoitink, H. A. J. ( 2005; ). Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and compost-amended potting mixes. Plant Dis 89, 1195–1200.[CrossRef]
    [Google Scholar]
  17. Howell, C. R. ( 2003; ). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87, 4–10.[CrossRef]
    [Google Scholar]
  18. Khan, J., Ooka, J. J., Miller, S. A., Madden, L. V. & Hoitink, H. A. J. ( 2004; ). Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88, 280–286.[CrossRef]
    [Google Scholar]
  19. Klein, D. & Eveleigh, D. E. ( 1998; ). Ecology of Trichoderma. In Trichoderma and Gliocladium. Basic Biology, Taxonomy and Genetics, pp. 57–74. Edited by C. P. Kubicek & G. E. Harman. London: Taylor & Francis.
  20. Krause, C., Kirschbaum, J., Jung, G. & Bruckner, H. ( 2006; ). Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride. J Pept Sci 12, 321–327.[CrossRef]
    [Google Scholar]
  21. Leclerc, G., Rebuffat, S., Goulard, C. & Bodo, B. ( 1998; ). Directed biosynthesis of peptaibol antibiotics in two Trichoderma strains I. Fermentation and isolation. J Antibiot (Tokyo) 51, 170–177.[CrossRef]
    [Google Scholar]
  22. Lee, J. Y., Yang, S. T., Lee, S. K., Jung, H. H., Shin, S. Y., Hahm, K. S. & Kim, J. I. ( 2008; ). Salt-resistant homodimeric bactenecin. a cathelicidin-derived antimicrobial peptide. FEBS J 275, 3911–3920.[CrossRef]
    [Google Scholar]
  23. Leitgeb, B., Szekeres, A., Manezinger, L., Vagvolgyi, C. & Kredics, L. ( 2007; ). The history of alamehicin: a review of the most extensively studied peptaibol. Chem Biodivers 4, 1027–1051.[CrossRef]
    [Google Scholar]
  24. Linaldeddu, B. T., Maddau, L. & Franceschini, A. ( 2005; ). Preliminary in vitro investigation on the interaction among endophytic fungi isolated from Quercus spp. IOBC WPRS Bull 28, 101–102.
    [Google Scholar]
  25. Linaldeddu, B. T., Franceschini, A., Luque, J. & Phillips, A. J. L. ( 2007a; ). First report of canker disease caused by Botryosphaeria parva on cork oak trees in Italy. Plant Dis 91, 324
    [Google Scholar]
  26. Linaldeddu, B. T., Maddau, L. & Franceschini, A. ( 2007b; ). Attività antagonistica di isolati endofitici di Trichoderma spp. verso Botryosphaeriaceae associate al deperimento della quercia da sughero. Micol Ital 36, 22–29.
    [Google Scholar]
  27. Linaldeddu, B.T., Sirca, C., Spano, D. & Franceschini, A. ( 2009; ). Physiological responses of cork oak and holm oak to infection by pathogens involved in oak decline. For Pathol 39, 232–238.[CrossRef]
    [Google Scholar]
  28. Loo, J. A. ( 2000; ). Electrospray ionization mass spectrometry: a technology for studying non-covalent macromolecular complexes. Int J Mass Spectrom 200, 175–186.[CrossRef]
    [Google Scholar]
  29. Luque, J. & Girbal, J. ( 1989; ). Dieback of cork oak (Quercus suber) in Catalonia (NE Spain) caused by Botryosphaeria stevensii. Eur J For Pathol 19, 7–13.[CrossRef]
    [Google Scholar]
  30. Luque, J., Parlade, J. & Pera, J. ( 2000; ). Pathogenicity of fungi isolated from Quercus suber in Catalonia (NE Spain). For Pathol 30, 247–263.[CrossRef]
    [Google Scholar]
  31. Luque, J., Pera, J. & Parladé, J. ( 2008; ). Evaluation of fungicides for the control of Botryosphaeria corticola on cork oak in Catalonia (NE Spain). For Pathol 38, 147–155.[CrossRef]
    [Google Scholar]
  32. Maddau, L., Linaldeddu, B. T. & Franceschini, A. ( 2005; ). Antagonistic interactions between fungal endophytes and pathogens involved in oak decline. J Plant Pathol 87, 297
    [Google Scholar]
  33. McLaughlin, J. L., Chang, C. J. & Smith, D. L. ( 1993; ). Simple bench-top bioassays (brine shrimp and potato discs) for the discovery of plant antitumour compounds. In Human Medicinal Agents from Plants (ACS Symposium 534), pp. 112–137. Edited by A. D. Kinghorn & M. F. Balandrin. Washington, DC: American Chemical Society.
  34. Mejia, L. C., Rojas, E. I., Maynard, Z., Van Bael, S., Arnold, A. E., Hebbar, P., Samuels, G. J., Robbins, N. & Herre, E. A. ( 2008; ). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46, 4–14.[CrossRef]
    [Google Scholar]
  35. Peltola, J., Ritieni, A., Mikkola, R., Grigoriev, P. A., Pocsfalvi, G., Andersson, M. A. & Salikinoja-Salomen, M. S. ( 2004; ). Biological effects of Trichoderma harzianum peptaibols on mammalian cells. Appl Environ Microbiol 70, 4996–5004.[CrossRef]
    [Google Scholar]
  36. Pócsfalvi, G., Ritieni, A., Ferranti, P., Randazzo, G., Vékey, K. & Malorini, A. ( 1997; ). Microheterogeneity characterization of a paracelsin mixture from Trichoderma resei using high-energy collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom 11, 922–930.[CrossRef]
    [Google Scholar]
  37. Pócsfalvi, G., Scala, F., Lorito, M., Ritieni, A., Randazzo, G., Ferranti, P., Vékey, K. & Malorini, A. ( 1998; ). Microheterogeneity characterization of a trichorzianine-A mixture from Trichoderma harzianum. J Mass Spectrom 33, 154–163.[CrossRef]
    [Google Scholar]
  38. Rebuffat, S., Conraux, L., Massias, M., Auvin-Guette, C. & Bodo, B. ( 1993; ). Sequence and solution conformation of the 20-residue peptaibols, saturnisporins SA II and Sa IV. Int J Pept Protein Res 41, 74–84.
    [Google Scholar]
  39. Rebuffat, S., Goulard, C. & Bodo, B. ( 1995; ). Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols. J Chem Soc Perkin Trans I, 1849–1855.
    [Google Scholar]
  40. Reino, J. L., Guerrero, R. F., Hernández-Galan, R. & Collado, I. G. ( 2008; ). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7, 89–123.
    [Google Scholar]
  41. Saikkonen, K. ( 2007; ). Forest structure and fungal endophytes. Fungal Biol Rev 21, 67–74.[CrossRef]
    [Google Scholar]
  42. Sanchez, M. E., Venegas, J., Romero, M. A., Phillips, A. J. L. & Trapero, A. ( 2003; ). Botryosphaeria and related taxa causing oak canker in southwestern Spain. Plant Dis 87, 1515–1521.[CrossRef]
    [Google Scholar]
  43. Santos, M. N. S. ( 1995; ). Phytopathological situation of cork-oak (Quercus suber L.) in Portugal. IOBC WPRS Bull 18, 38–42.
    [Google Scholar]
  44. Schibli, D. J., Hunter, H. N., Aseyev, A., Starner, T. D., Wiencek, J. M., McCray, P. B., Jr, Tack, B. F. & Vogel, H. J. ( 2002; ). The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem 277, 8279–8289.[CrossRef]
    [Google Scholar]
  45. Schulz, B. & Boyle, C. ( 2005; ). The endophytic continuum. Mycol Res 109, 661–686.[CrossRef]
    [Google Scholar]
  46. Schulz, B., Boyle, C., Draeger, S., Rommert, A. K. & Krohn, K. ( 2002; ). Endophytic fungi: a source of biologically active secondary metabolites. Mycol Res 106, 996–1004.[CrossRef]
    [Google Scholar]
  47. Sieber, T. N. ( 2007; ). Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21, 75–89.[CrossRef]
    [Google Scholar]
  48. Sikora, R. A., Pocasangre, L., zum Felde, A., Niere, B., Vu, T. T. & Dababat, A. A. ( 2008; ). Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46, 15–23.[CrossRef]
    [Google Scholar]
  49. Stone, J. K., Sherwood, M. A. & Carroll, G. C. ( 1996; ). Canopy microfungi: function and diversity. Northwest Sci 70, 37–45.
    [Google Scholar]
  50. Strobel, G., Daisy, B., Castillo, U. & Harper, J. ( 2004; ). Natural products from endophytic microorganisms. J Nat Prod 67, 257–268.[CrossRef]
    [Google Scholar]
  51. Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L. & Vagvölgyi, C. ( 2005; ). Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiol Immunol Hung 52, 137–168.[CrossRef]
    [Google Scholar]
  52. Tan, R. X. & Zou, W. X. ( 2001; ). Endophytes: a rich source of functional matabolites. Nat Prod Rep 18, 448–459.[CrossRef]
    [Google Scholar]
  53. Tencza, S. B., Creighton, D. J., Yuan, T., Vogel, H. J., Montelaro, R. C. & Mietzner, T. A. ( 1999; ). Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. J Antimicrob Chemother 44, 33–41.[CrossRef]
    [Google Scholar]
  54. Vega, F. E., Posada, F., Aime, M. C., Pava-Ripoll, M., Infante, F. & Rehner, S. A. ( 2008; ). Entomopathogenic fungal endophytes. Biol Control 46, 72–82.[CrossRef]
    [Google Scholar]
  55. Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y. & Valéro, J. R. ( 2007; ). Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37, 1–20.[CrossRef]
    [Google Scholar]
  56. Vinale, F., Sivasithamparam, K., Ghisalberti, L., Marra, R., Woo, S. L. & Lorito, M. ( 2008; ). Trichoderma–plant-pathogen interactions. Soil Biol Biochem 40, 1–10.[CrossRef]
    [Google Scholar]
  57. Viterbo, A., Wiest, A., Brotman, Y., Chet, I. & Kenerley, C. ( 2007; ). The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8, 737–746.[CrossRef]
    [Google Scholar]
  58. Wada, S.-I., Nishimura, T., Iida, A., Toyama, N. & Fujita, T. ( 1994; ). Primary structures of antibiotic peptides, trichocellins A and B from Trichoderma viride. Tetrahedron Lett 35, 3095–3098.[CrossRef]
    [Google Scholar]
  59. Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. & Chet, I. ( 2003; ). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69, 7343–7353.[CrossRef]
    [Google Scholar]
  60. You, S., Lien, L., Breed, J., Sansom, M. S. & Woolley, G. A. ( 1996; ). Engineering stabilized ion channels. Covalent dimmers of alamethicin. Biochemistry 35, 6225–6232.[CrossRef]
    [Google Scholar]
  61. Zhang, H. W., Song, Y. C. & Tan, R. X. ( 2006; ). Biology and chemistry of endophytes. Nat Prod Rep 23, 753–771.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030916-0
Loading
/content/journal/micro/10.1099/mic.0.030916-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error