1887

Abstract

The putative homologue of the stretch-activated calcium ion channel Mid1 was investigated for its role in vegetative growth, differentiation and pathogenicity on rye (). Gene replacement mutants of were not affected in polar growth and branching in axenic culture but showed a significantly reduced growth rate. The growth defect could not be complemented by Ca supplementation, in contrast to mutants in yeast, but the altered sensitivity of the mutants to changes in external and internal Ca concentrations indicates some role of Mid1 in Ca homeostasis. The major effect of deletion, however, was the complete loss of virulence: infected rye plants showed no disease symptoms at all. Detailed analyses of -infected rye ovaries demonstrated that the Δ mutants had multiple apical branches and were unable to infect the host tissue, suggesting that Mid1 is essential for generating the necessary mechanical force for penetration. This is believed to be the first report of an essential role for a Mid1 homologue in the virulence of a plant-pathogenic fungus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030825-0
2009-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3922.html?itemId=/content/journal/micro/10.1099/mic.0.030825-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1987; ). Current Protocols in Molecular Biology. New York: Wiley.
  3. Brand, A., Shanks, S., Duncan, V. M., Yang, M., Mackenzie, K. & Gow, N. A. R. ( 2007; ). Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol 17, 347–352.
    [Google Scholar]
  4. Carnero, E., Ribas, J. C., García, B., Durán, A. & Sánchez, Y. ( 2000; ). Schizosaccharomyces pombe ehs1p is involved in maintaining cell wall integrity and in calcium uptake. Mol Gen Genet 264, 173–183.[CrossRef]
    [Google Scholar]
  5. Cenis, J. L. ( 1992; ). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20, 2380 [CrossRef]
    [Google Scholar]
  6. Currier, H. B. & Strugger, S. ( 1956; ). Aniline blue and fluorescence microscopy of callose in bulb scales of Allium cepa L. Protoplasma 45, 552–559.[CrossRef]
    [Google Scholar]
  7. Cyert, M. S. ( 2003; ). Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem Biophys Res Commun 311, 1143–1150.[CrossRef]
    [Google Scholar]
  8. da Silva Ferreira, M. E., Heinekamp, T., Härtl, A., Brakhage, A. A., Semighini, C. P., Harris, S. D., Savoldi, M., de Gouvêa, P. F., de Souza Goldman, M. H. & other authors ( 2007; ). Functional characterization of the Aspergillus fumigatus calcineurin. Fungal Genet Biol 44, 219–230.[CrossRef]
    [Google Scholar]
  9. de Nobel, H., Sietsma, J. H., van den Ende, H. & Klis, F. M. ( 2001; ). Molecular organization and construction of the fungal cell wall. In The Mycota VIII: Biology of the Fungal Cell, pp. 181–200. Edited by R. J. Howard & N. A. R. Gow. Berlin & Heidelberg: Springer.
  10. Esser, K. & Tudzynski, P. ( 1978; ). Genetics of the ergot fungus Claviceps purpurea. Theor Appl Genet 53, 145–149.[CrossRef]
    [Google Scholar]
  11. Fischer, M., Schnell, N., Chattaway, J., Davies, P., Dixon, G. & Sanders, D. ( 1997; ). The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett 419, 259–262.[CrossRef]
    [Google Scholar]
  12. Fischer, R., Zekert, N. & Takeshita, N. ( 2008; ). Polarized growth in fungi – interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68, 813–826.[CrossRef]
    [Google Scholar]
  13. Garrill, A., Jackson, S. L., Lew, R. R. & Heath, I. B. ( 1993; ). Ion channel activity and tip growth: tip-localized stretch-activated channels generate an essential Ca2+ gradient in the oomycete Saprolegnia ferax. Eur J Cell Biol 60, 358–365.
    [Google Scholar]
  14. Giesbert, S., Lepping, H. B., Tenberge, K. B. & Tudzynski, P. ( 1998; ). The xylanolytic system of Claviceps purpurea: cytological evidence for secretion of xylanases in infected rye tissue and molecular characterization of two xylanase genes. Phytopathology 88, 1020–1030.[CrossRef]
    [Google Scholar]
  15. Haarmann, T., Lorenz, N. & Tudzynski, P. ( 2008; ). Use of a nonhomologous end joining deficient strain (Δku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol 45, 35–44.[CrossRef]
    [Google Scholar]
  16. Hallen, H. E. & Trail, F. ( 2008; ). The L-type calcium ion channel cch1 affects ascospore discharge and mycelial growth in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryot Cell 7, 415–424.[CrossRef]
    [Google Scholar]
  17. Harris, S. D. & Momany, M. ( 2004; ). Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 41, 391–400.[CrossRef]
    [Google Scholar]
  18. Hepler, P. K., Vidali, L. & Cheung, A. Y. ( 2001; ). Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17, 159–187.[CrossRef]
    [Google Scholar]
  19. Hoagland, D. R. & Arnon, D. I. ( 1950; ). The water-culture method for growing plants without soil. In Agricultural Experimental Station Circular 347. Berkley, CA: College of Agriculture, University of California.
  20. Hood, M. E. & Shew, H. D. ( 1996; ). Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. Phytopathology 86, 704–708.[CrossRef]
    [Google Scholar]
  21. Hüsgen, U., Büttner, P., Müller, U. & Tudzynski, P. ( 1999; ). Variation in karyotype and ploidy level among field isolates of Claviceps purpurea. J Phytopathol 147, 591–597.[CrossRef]
    [Google Scholar]
  22. Iida, H., Nakamura, H., Ono, T., Okumura, M. S. & Anraku, Y. ( 1994; ). MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol 14, 8259–8271.
    [Google Scholar]
  23. Iida, K., Tada, T. & Iida, H. ( 2004; ). Molecular cloning in yeast by in vivo homologous recombination of the yeast putative α1 subunit of the voltage-gated calcium channel. FEBS Lett 576, 291–296.[CrossRef]
    [Google Scholar]
  24. Jackson, S. L. & Heath, I. B. ( 1993; ). Roles of calcium ions in hyphal tip growth. Microbiol Rev 57, 367–382.
    [Google Scholar]
  25. Jan, L. Y. & Jan, Y. N. ( 1990; ). A superfamily of ion channels. Nature 345, 672 [CrossRef]
    [Google Scholar]
  26. Jungehülsing, U., Arntz, C., Smit, R. & Tudzynski, P. ( 1994; ). The Claviceps purpurea glyceraldehyde-3-phosphate dehydrogenase gene: cloning, characterization, and use for the improvement of a dominant selection system. Curr Genet 25, 101–106.[CrossRef]
    [Google Scholar]
  27. Kanzaki, M., Nagasawa, M., Kojima, I., Sato, C., Naruse, K., Sokabe, M. & Iida, H. ( 1999; ). Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285, 882–886.[CrossRef]
    [Google Scholar]
  28. Kraus, P. R. & Heitman, J. ( 2003; ). Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochem Biophys Res Commun 311, 1151–1157.[CrossRef]
    [Google Scholar]
  29. Levina, N. N., Lew, R. R., Hyde, G. J. & Heath, I. B. ( 1995; ). The roles of Ca2+ and plasma membrane ion channels in hyphal tip growth of Neurospora crassa. J Cell Sci 108, 3405–3417.
    [Google Scholar]
  30. Lew, R. R., Abbas, Z., Anderca, M. I. & Free, S. J. ( 2008; ). Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, Neurospora crassa. Eukaryot Cell 7, 647–655.[CrossRef]
    [Google Scholar]
  31. Maeda, H. & Ishida, N. ( 1967; ). Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J Biochem 62, 276–278.
    [Google Scholar]
  32. Malhó, R. & Trewavas, A. J. ( 1996; ). Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8, 1935–1949.[CrossRef]
    [Google Scholar]
  33. Mantle, P. G. & Nisbet, L. J. ( 1976; ). Differentiation of Claviceps purpurea in axenic culture. J Gen Microbiol 93, 321–334.[CrossRef]
    [Google Scholar]
  34. Maruoka, T., Nagasoe, Y., Inoue, S., Mori, Y., Goto, J., Ikeda, M. & Iida, H. ( 2002; ). Essential hydrophilic carboxyl-terminal regions including cysteine residues of the yeast stretch-activated calcium-permeable channel Mid1. J Biol Chem 277, 11645–11652.[CrossRef]
    [Google Scholar]
  35. Mattson, M. P. ( 1999; ). Establishment and plasticity of neuronal polarity. J Neurosci Res 57, 577–589.[CrossRef]
    [Google Scholar]
  36. Meyberg, M. ( 1988; ). Selective staining of fungal hyphae in parasitic and symbiotic plant-fungus associations. Histochemistry 88, 197–199.[CrossRef]
    [Google Scholar]
  37. Müller, U., Tenberge, K. B., Oeser, B. & Tudzynski, P. ( 1997; ). Cel1, probably encoding a cellobiohydrolase lacking the substrate binding domain, is expressed in the initial infection phase of Claviceps purpurea on Secale cereale. Mol Plant Microbe Interact 10, 268–279.[CrossRef]
    [Google Scholar]
  38. Nakagawa, Y., Katagiri, T., Shinozaki, K., Qi, Z., Tatsumi, H., Furuichi, T., Kishigami, A., Sokabe, M., Kojima, I. & other authors ( 2007; ). Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci U S A 104, 3639–3644.[CrossRef]
    [Google Scholar]
  39. Nelson, G., Kozlova-Zwinderman, O., Collis, A. J., Knight, M. R., Fincham, J. R., Stanger, C. P., Renwick, A., Hessing, J. G., Punt, P. J. & other authors ( 2004; ). Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Mol Microbiol 52, 1437–1450.[CrossRef]
    [Google Scholar]
  40. Nguyen, Q. B., Kadotani, N., Kasahara, S., Tosa, Y., Mayama, S. & Nakayashiki, H. ( 2008; ). Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68, 1348–1365.[CrossRef]
    [Google Scholar]
  41. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B. & other authors ( 2005; ). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156.[CrossRef]
    [Google Scholar]
  42. Oeser, B., Heidrich, P. M., Muller, U., Tudzynski, P. & Tenberge, K. B. ( 2002; ). Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet Biol 36, 176–186.[CrossRef]
    [Google Scholar]
  43. Oeser, B., Beaussart, F., Haarmann, T., Lorenz, N., Nathues, E., Rolke, Y., Scheffer, J., Weiner, J. & Tudzynski, P. ( 2009; ). Expressed sequence tags from the flower pathogen Claviceps purpurea. Mol Plant Pathol 10, 665–684.[CrossRef]
    [Google Scholar]
  44. Ozeki-Miyawaki, C., Moriya, Y., Tatsumi, H., Iida, H. & Sokabe, M. ( 2005; ). Identification of functional domains of Mid1, a stretch-activated channel component, necessary for localization to the plasma membrane and Ca2+ permeation. Exp Cell Res 311, 84–95.[CrossRef]
    [Google Scholar]
  45. Paidhungat, M. & Garrett, S. ( 1997; ). A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol 17, 6339–6347.
    [Google Scholar]
  46. Pierson, E. S., Miller, D. D., Callaham, D. A., Shipley, A. M., Rivers, B. A., Cresti, M. & Hepler, P. K. ( 1994; ). Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6, 1815–1828.[CrossRef]
    [Google Scholar]
  47. Pringle, J. R. ( 1991; ). Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol 194, 732–735.
    [Google Scholar]
  48. Prokisch, H., Yarden, O., Dieminger, M., Tropschug, M. & Barthelmess, I. B. ( 1997; ). Impairment of calcineurin function in Neurospora crassa reveals its essential role in hyphal growth, morphology and maintenance of the apical Ca2+ gradient. Mol Gen Genet 256, 104–114.[CrossRef]
    [Google Scholar]
  49. Read, N. D., Kellock, L. J., Knight, H. & Trewavas, A. J. ( 1992; ). Contact sensing during infection by fungal pathogens. In Perspectives in Plant Cell Recognition, pp. 137–172. Edited by J. A. Callow & J. R. Green. Cambridge: Cambridge University Press.
  50. Robson, G. D., Wiebe, M. G. & Trinci, A. P. J. ( 1991; ). Involvement of Ca2+ in the regulation of hyphal extension and branching in Fusarium graminearum A 3/5. Exp Mycol 15, 263–272.[CrossRef]
    [Google Scholar]
  51. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  52. Schardl, C. L., Panaccione, D. G. & Tudzynski, P. ( 2006; ). Ergot alkaloids – biology and molecular biology. Alkaloids Chem Biol 63, 45–86.
    [Google Scholar]
  53. Scheffer, J. & Tudzynski, P. ( 2006; ). In vitro pathogenicity assay for the ergot fungus Claviceps purpurea. Mycol Res 110, 465–470.[CrossRef]
    [Google Scholar]
  54. Scheffer, J., Ziv, C., Yarden, O. & Tudzynski, P. ( 2005; ). The COT1 homologue CPCOT1 regulates polar growth and branching and is essential for pathogenicity in Claviceps purpurea. Fungal Genet Biol 42, 107–118.[CrossRef]
    [Google Scholar]
  55. Schoffelmeer, E. A. M., Klis, F. M., Sietsma, J. H. & Cornelissen, B. J. C. ( 1999; ). The cell wall of Fusarium oxysporum. Fungal Genet Biol 27, 275–282.[CrossRef]
    [Google Scholar]
  56. Silverman-Gavrila, L. B. & Lew, R. R. ( 2002; ). An IP3-activated Ca2+ channel regulates fungal tip growth. J Cell Sci 115, 5013–5025.[CrossRef]
    [Google Scholar]
  57. Silverman-Gavrila, L. B. & Lew, R. R. ( 2003; ). Calcium gradient dependence of Neurospora crassa hyphal growth. Microbiology 149, 2475–2485.[CrossRef]
    [Google Scholar]
  58. Smit, R. & Tudzynski, P. ( 1992; ). Efficient transformation of Claviceps purpurea using pyrimidine auxotrophic mutants: cloning of the OMP decarboxylase gene. Mol Gen Genet 234, 297–305.
    [Google Scholar]
  59. Tasaka, Y., Nakagawa, Y., Sato, C., Mino, M., Uozumi, N., Murata, N., Muto, S. & Iida, H. ( 2000; ). yam8 +, a Schizosaccharomyces pombe gene, is a potential homologue of the Saccharomyces cerevisiae MID1 gene encoding a stretch-activated Ca2+-permeable channel. Biochem Biophys Res Commun 269, 265–269.[CrossRef]
    [Google Scholar]
  60. Tenberge, K. B. ( 1999; ). Biology and life strategy of the ergot fungi. VI. Ergot – The Genus Claviceps. In Medicinal & Aromatic Plants – Industrial Profiles, pp. 25–56. Edited by V. Křen & L. Cvak. Amsterdam & London: Harwood Academic Publishers.
  61. Tenberge, K. B., Homann, V., Oeser, B. & Tudzynski, P. ( 1996; ). Structure and expression of two polygalacturonase genes of Claviceps purpurea oriented in tandem and cytological evidence for pectinolytic enzyme activity during infection of rye. Phytopathology 86, 1084–1097.[CrossRef]
    [Google Scholar]
  62. Torralba, S. & Heath, I. B. ( 2001; ). Cytoskeletal and Ca2+ regulation of hyphal tip growth and initiation. Curr Top Dev Biol 51, 135–187.
    [Google Scholar]
  63. Tudzynski, P. & Scheffer, J. ( 2004; ). Claviceps purpurea: molecular aspects of a unique pathogenic lifestyle. Mol Plant Pathol 5, 377–388.[CrossRef]
    [Google Scholar]
  64. Watts, H. J., Véry, A. A., Perera, T. H., Davies, J. M. & Gow, N. A. R. ( 1998; ). Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology 144, 689–695.[CrossRef]
    [Google Scholar]
  65. Yoshimoto, H., Saltsman, K., Gasch, A. P., Li, H. X., Ogawa, N., Botstein, D., Brown, P. O. & Cyert, M. S. ( 2002; ). Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J Biol Chem 277, 31079–31088.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030825-0
Loading
/content/journal/micro/10.1099/mic.0.030825-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3922 - 3933

( PDF, 417 kb), including: Replacement and complementation strategy for the gene Growth of 20.1Δ and the Δ mutant on Mantle medium with different concentrations of CaCl Growth of 20.1Δ and the Δ mutant on Mantle medium with different agar densities Growth of 20.1Δ and the Δ mutant on Mantle medium with different concentrations of NaCl Growth of 20.1Δ and the Δ mutant on normal Mantle medium and Mantle medium without CaCl supplementation and different concentrations of the calcium chelator EGTA



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error