1887

Abstract

Enterohaemorrhagic and enteropathogenic (EHEC and EPEC) inject a repertoire of effector proteins into host cells via a type III secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE). OspG is an effector protein initially identified in that was shown to inhibit the host innate immune response. In this study, we found homologues in EHEC (mainly of serogroup O111) and in The T3SS encoded by the LEE was able to inject these different OspG homologues into host cells. Infection of HeLa cells with EHEC O111 inhibited the NF-B-dependent innate immune response via a T3SS-dependent mechanism. However, an EHEC O111 mutant was still able to inhibit NF-B p65 transfer to the nucleus in infected cells stimulated by tumour necrosis factor (TNF-). In addition, no difference in the inflammatory response was observed between wild-type EHEC O111 and the isogenic mutant in the rabbit ligated intestinal loop model. These results suggest that OspG is not the sole effector protein involved in the inactivation of the host innate immune system during EHEC O111 infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030759-0
2009-10-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3214.html?itemId=/content/journal/micro/10.1099/mic.0.030759-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  2. Berin M. C., Darfeuille-Michaud A., Egan L. J., Miyamoto Y., Kagnoff M. F.. 2002; Role of EHEC O157 : H7 virulence factors in the activation of intestinal epithelial cell NF- κB and MAP kinase pathways and the upregulated expression of interleukin 8. Cell Microbiol4:635–648
    [Google Scholar]
  3. Bhavsar A. P., Guttman J. A., Finlay B. B.. 2007; Manipulation of host-cell pathways by bacterial pathogens. Nature449:827–834
    [Google Scholar]
  4. Buchrieser C., Glaser P., Rusniok C., Nedjari H., d'Hauteville H., Kunst F., Sansonetti P., Parsot C.. 2000; The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol38:760–771
    [Google Scholar]
  5. Charpentier X., Oswald E.. 2004; Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 β-lactamase as a new fluorescence-based reporter. J Bacteriol186:5486–5495
    [Google Scholar]
  6. Cherepanov P. P., Wackernagel W.. 1995; Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene158:9–14
    [Google Scholar]
  7. Dahan S., Busuttil V., Imbert V., Peyron J.-F., Rampal P., Czerucka D.. 2002; Enterohemorrhagic Escherichia coli infection induces interleukin-8 production via activation of mitogen-activated protein kinases and the transcription factors NF- κB and AP-1 in T84 cells. Infect Immun70:2304–2310
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645
    [Google Scholar]
  9. Espinosa A., Alfano J. R.. 2004; Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Cell Microbiol6:1027–1040
    [Google Scholar]
  10. Garcia-Angulo V. A., Deng W., Thomas N. A., Finlay B. B., Puente J. L.. 2008; Regulation of expression and secretion of NleH, a new non-LEE-encoded effector in Citrobacter rodentium. J Bacteriol190:2388–2399
    [Google Scholar]
  11. Garmendia J., Frankel G., Crepin V. F.. 2005; Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun73:2573–2585
    [Google Scholar]
  12. Gobert A. P., Wilson K. T., Martin C.. 2005; Cellular responses to attaching and effacing bacteria: activation and implication of the innate immune system. Arch Immunol Ther Exp (Warsz53:234–244
    [Google Scholar]
  13. Goffaux F., Mainil J., Pirson V., Charlier G., Pohl P., Jacquemin E., China B.. 1997; Bovine attaching and effacing Escherichia coli possess a pathogenesis island related to the LEE of the human enteropathogenic Escherichia coli strain E2348/69. FEMS Microbiol Lett154:415–421
    [Google Scholar]
  14. Hauf N., Chakraborty T.. 2003; Suppression of NF- κB activation and proinflammatory cytokine expression by Shiga toxin-producing Escherichia coli. J Immunol170:2074–2082
    [Google Scholar]
  15. Hemrajani C., Marches O., Wiles S., Girard F., Dennis A., Dziva F., Best A., Phillips A. D., Berger C. N.. other authors 2008; Role of NleH, a type III secreted effector from attaching and effacing pathogens, in colonization of the bovine, ovine, and murine gut. Infect Immun76:4804–4813
    [Google Scholar]
  16. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59
    [Google Scholar]
  17. Jiang Y., Yang F., Zhang X., Yang J., Chen L., Yan Y., Nie H., Xiong Z., Wang J.. other authors 2005; The complete sequence and analysis of the large virulence plasmid pSS of Shigella sonnei. Plasmid54:149–159
    [Google Scholar]
  18. Jin Q., Yuan Z., Xu J., Wang Y., Shen Y., Lu W., Wang J., Liu H., Yang J.. other authors 2002; Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res30:4432–4441
    [Google Scholar]
  19. Jubelin G., Varela Chavez C., Taieb F., Banfield M. J., Samba-Louaka A., Nobe R., Nougayrede J.-P., Zumbihl R., Givaudan A.. other authors 2009; Cycle inhibiting factors (CIFs) are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens. PLoS One4:e4855
    [Google Scholar]
  20. Kaniga K., Delor I., Cornelis G. R.. 1991; A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene109:137–141
    [Google Scholar]
  21. Kaper J. B., Nataro J. P., Mobley H. L. T.. 2004; Pathogenic Escherichia coli. Nat Rev Microbiol2:123–140
    [Google Scholar]
  22. Karmali M. A.. 1989; Infection by verocytotoxin-producing Escherichia coli. Clin Microbiol Rev2:15–38
    [Google Scholar]
  23. Kim D. W., Lenzen G., Page A.-L., Legrain P., Sansonetti P. J., Parsot C.. 2005; The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc Natl Acad Sci U S A102:14046–14051
    [Google Scholar]
  24. Li Q., Verma I. M.. 2002; NF- κB regulation in the immune system. Nat Rev Immunol2:725–734
    [Google Scholar]
  25. Loukiadis E., Nobe R., Herold S., Tramuta C., Ogura Y., Ooka T., Morabito S., Kerouredan M., Brugere H.. other authors 2008; Distribution, functional expression, and genetic organization of Cif, a phage-encoded type III-secreted effector from enteropathogenic and enterohemorrhagic Escherichia coli. J Bacteriol190:275–285
    [Google Scholar]
  26. Marches O., Ledger T. N., Boury M., Ohara M., Tu X., Goffaux F., Mainil J., Rosenshine I., Sugai M.. other authors 2003; Enteropathogenic and enterohemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol Microbiol50:1553–1567
    [Google Scholar]
  27. Menard R., Sansonetti P. J., Parsot C.. 1993; Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol175:5899–5906
    [Google Scholar]
  28. Miller J. H.. 1992; A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Mukherjee S., Keitany G., Li Y., Wang Y., Ball H. L., Goldsmith E. J., Orth K.. 2006; Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science312:1211–1214
    [Google Scholar]
  30. Nougayrede J.-P., Marches O., Boury M., Mainil J., Charlier G., Pohl P., De Rycke J., Milon A., Oswald E.. 1999; The long-term cytoskeletal rearrangement induced by rabbit enteropathogenic Escherichia coli is Esp dependent but intimin independent. Mol Microbiol31:19–30
    [Google Scholar]
  31. Ogura Y., Ooka T., Asadulghani, Terajima J., Nougayrede J.-P., Kurokawa K., Tashiro K., Tobe T., Nakayama K.. other authors 2007; Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biol8:R138
    [Google Scholar]
  32. Peralta-Ramirez J., Hernandez J. M., Manning-Cela R., Luna-Muñoz J., Garcia-Tovar C., Nougayréde J.-P., Oswald E., Navarro-Garcia F.. 2008; EspF interacts with nucleation-promoting factors to recruit junctional proteins into pedestals for pedestal maturation and disruption of paracellular permeability. Infect Immun76:3854–3868
    [Google Scholar]
  33. Ruchaud-Sparagano M.-H., Maresca M., Kenny B.. 2007; Enteropathogenic Escherichia coli (EPEC) inactive innate immune responses prior to compromising epithelial barrier function. Cell Microbiol9:1909–1921
    [Google Scholar]
  34. Sansonetti P. J.. 2004; War and peace at mucosal surfaces. Nat Rev Immunol4:953–964
    [Google Scholar]
  35. Savkovic S. D., Koutsouris A., Hecht G.. 1997; Activation of NF- κB in intestinal epithelial cells by enteropathogenic Escherichia coli. Am J Physiol273:C1160–C-1167
    [Google Scholar]
  36. Sharma R., Tesfay S., Tomson F. L., Kanteti R. P., Viswanathan V. K., Hecht G.. 2006; Balance of bacterial pro- and anti-inflammatory mediators dictates net effect of enteropathogenic Escherichia coli on intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol290:G685–G694
    [Google Scholar]
  37. Thomson N. R., Howard S., Wren B. W., Holden M. T. G., Crossman L., Challis G. L., Churcher C., Mungall K., Brooks K.. other authors 2006; The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet2:e206
    [Google Scholar]
  38. Tobe T., Beatson S. A., Taniguchi H., Abe H., Bailey C. M., Fivian A., Younis R., Matthews S., Marches O.. other authors 2006; An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A103:14941–14946
    [Google Scholar]
  39. Venkatesan M. M., Goldberg M. B., Rose D. J., Grotbeck E. J., Burland V., Blattner F. R.. 2001; Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect Immun69:3271–3285
    [Google Scholar]
  40. Viswanathan V. K., Koutsouris A., Lukic S., Pilkinton M., Simonovic I., Simonovic M., Hecht G.. 2004; Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function. Infect Immun72:3218–3227
    [Google Scholar]
  41. Wild J., Sektas M., Hradecna Z., Szybalski W.. 1998; Targeting and retrofitting pre-existing libraries of transposon insertions with FRT and oriV elements for in vivo generation of large quantities of any genomic fragment. Gene223:55–66
    [Google Scholar]
  42. Yang F., Yang J., Zhang X., Chen L., Jiang Y., Yan Y., Tang X., Wang J., Xiong Z.. other authors 2005; Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res33:6445–6458
    [Google Scholar]
  43. Zhou X., Giron J. A., Torres A. G., Crawford J. A., Negrete E., Vogel S. N., Kaper J. B.. 2003; Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 Cells. Infect Immun71:2120–2129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030759-0
Loading
/content/journal/micro/10.1099/mic.0.030759-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error