1887

Abstract

569 spores germinate either with inosine as a sole germinant or with a combination of nucleosides and -alanine. Whereas the inosine-only germination pathway requires the presence of two different germination receptors (GerI and GerQ) to be activated, the nucleoside/alanine germination pathway only needs one of the two receptors. To differentiate how nucleoside recognition varies between the inosine-only germination pathway and the nucleoside/alanine germination pathway, we tested 61 purine analogues as agonists and antagonists of the two pathways in wild-type, Δ and Δ spores. The structure–activity relationships of germination agonists and antagonists suggest that the inosine-only germination pathway is restricted to recognize a single germinant (inosine), but can be inhibited in predictable patterns by structurally distinct purine nucleosides. spores encoding GerI as the only nucleoside receptor (Δ mutant) showed a germination inhibition profile similar to wild-type spores treated with inosine only. Thus, GerI seems to have a well-organized binding site that recognizes inosine and inhibitors through specific substrate–protein interactions. Structure–activity analysis also showed that the nucleoside/alanine germination pathway is more promiscuous toward purine nucleoside agonists, and is only inhibited by hydrophobic analogues. spores encoding GerQ as the only nucleoside receptor (Δ mutant) behaved like wild-type spores treated with inosine and -alanine. Thus, the GerQ receptor seems to recognize substrates in a more flexible binding site through non-specific interactions. We propose that the GerI receptor is responsible for germinant detection in the inosine-only germination pathway. On the other hand, supplementing inosine with -alanine allows bypassing of the GerI receptor to activate the more flexible GerQ receptor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030270-0
2010-04-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1244.html?itemId=/content/journal/micro/10.1099/mic.0.030270-0&mimeType=html&fmt=ahah

References

  1. Abel-Santos E., Dodatko T. 2007; Differential nucleoside recognition during Bacillus cereus 569 (ATCC 10876) spore germination. New J Chem 31:748–755
    [Google Scholar]
  2. Akoachere M., Squires R. C., Nour A. M., Angelov L., Brojatsch J., Abel-Santos E. V. 2007; Identification of an in vivo inhibitor of Bacillus anthracis Sterne spore germination. J Biol Chem 282:12112–12118
    [Google Scholar]
  3. Barlass P. J., Houston C. W., Clements M. O., Moir A. 2002; Germination of Bacillus cereus spores in response to l-alanine and to inosine: the roles of gerL and gerQ operons. Microbiology 148:2089–2095
    [Google Scholar]
  4. Barth H., Aktories K., Popoff M. R., Stiles B. G. 2004; Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402
    [Google Scholar]
  5. Bressi J. C., Choe J., Hough M. T., Buckner F. S., Van Voorhis W. C., Verlinde C. L. M. J., Hol W. G. J., Gelb M. H. 2000; Adenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-amino-N6-substituted adenosine. J Med Chem 43:4135–4150
    [Google Scholar]
  6. Cheng H. C. 2001; The power issue: determination of KB or Ki from IC50. A closer look at the Cheng–Prusoff equation, the Schild plot and related power equations. J Pharmacol Toxicol Methods 46:61–71
    [Google Scholar]
  7. Chirakkal H., O'Rourke M., Atrih A., Foster S. J., Moir A. 2002; Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148:2383–2392
    [Google Scholar]
  8. Clements M. O., Moir A. 1998; Role of the gerI operon of Bacillus cereus 569 in the response of spores to germinants. J Bacteriol 180:6729–6735
    [Google Scholar]
  9. Cloud J., Kelly C. P. 2007; Update on Clostridium difficile associated disease. Curr Opin Gastroenterol 23:4–9
    [Google Scholar]
  10. Edlich R. F., Hill L. G., Mahler C. A., Cox M. J., Becker D. G., Horowitz J. H., Nichter L. S., Martin M. L., Lineweaver W. C. 2003; Management and prevention of tetanus. J Long Term Eff Med Implants 13:139–154
    [Google Scholar]
  11. Ehling-Schulz M., Fricker M., Scherer S. 2004; Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol Nutr Food Res 48:479–487
    [Google Scholar]
  12. Gero A. 1972; Determination of the inhibition constant in competitive inhibition combined with enzyme activation. Enzymologia 43:261–269
    [Google Scholar]
  13. Hecht S. M., Kirkegaardt L. H., Bock R. M. 1971; Chemical modifications of transfer RNA species. Desulfurization with Raney nickel. Proc Natl Acad Sci U S A 68:48–51
    [Google Scholar]
  14. Hornstra L. M., de Vries Y. P., Wells-Bennik M. H., de Vos W. M., Abee T. 2006; Characterization of germination receptors of Bacillus cereus ATCC 14579. Appl Environ Microbiol 72:44–53
    [Google Scholar]
  15. Ireland J. A., Hanna P. C. 2002; Amino acid- and purine ribonucleoside-induced germination of Bacillus anthracis ΔSterne endospores: GerS mediates responses to aromatic ring structures. J Bacteriol 184:1296–1303
    [Google Scholar]
  16. Levinson H. S., Hyatt M. T. 1966; Sequence of events during Bacillus megaterium spore germination. J Bacteriol 91:1811–1818
    [Google Scholar]
  17. Li Z., Wan H., Shi Y., Ouyang P. 2004; Personal experience with four kinds of chemical structure drawing software: review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J Chem Inf Comput Sci 44:1886–1890
    [Google Scholar]
  18. Mock M., Fouet A. 2001; Anthrax. Annu Rev Microbiol 55:647–671
    [Google Scholar]
  19. Moir A. 2006; How do spores germinate?. J Appl Microbiol 101:526–530
    [Google Scholar]
  20. Moir A., Corfe B. M., Behravan J. 2002; Spore germination. Cell Mol Life Sci 59:403–409
    [Google Scholar]
  21. Mullay J. 1985; Calculation of group electronegativity. J Am Chem Soc 107:7271–7275
    [Google Scholar]
  22. Munson P. J., Rodbard D. 1988; An exact correction to the “Cheng–Prusoff” correction. J Recept Res 8:533–546
    [Google Scholar]
  23. Nicholson W. L., Setlow P. 1990 Molecular Biological Methods for Bacillus Chichester, UK: Wiley;
  24. Paredes C. J., Alsaker K. V., Papoutsakis E. T. 2005; A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3:969–978
    [Google Scholar]
  25. Piggot P. J. 1996; Spore development in Bacillus subtilis. Curr Opin Genet Dev 6:531–537
    [Google Scholar]
  26. Piggot P. J., Hilbert D. W. 2004; Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586
    [Google Scholar]
  27. Preston R. A., Douthit H. A. 1988; Functional relationships between l- and d-alanine, inosine and NH4Cl during germination of spores of Bacillus cereus T. J Gen Microbiol 134:3001–3010
    [Google Scholar]
  28. Sanchez-Salas J. L., Santiago-Lara M. L., Setlow B., Sussman M. D., Setlow P. 1992; Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination. J Bacteriol 174:807–814
    [Google Scholar]
  29. Sauer U., Santangelo J. D., Treuner A., Buchholz M., Dürre P. 1995; Sigma factor and sporulation genes in Clostridium. FEMS Microbiol Rev 17:331–340
    [Google Scholar]
  30. Segel I. H. 1993 Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems Chichester, UK: Wiley Interscience;
  31. Senesi S., Cercignani G., Freer G., Batoni G., Barnini S., Ota F. 1991; Structural and stereospecific requirements for the nucleoside-triggered germination of Bacillus cereus spores. J Gen Microbiol 137:399–404
    [Google Scholar]
  32. Setlow P. 2003; Spore germination. Curr Opin Microbiol 6:550–556
    [Google Scholar]
  33. Setlow P., Waites W. M. 1976; Identification of several unique, low-molecular-weight basic proteins in dormant spores of Clostridium bifermentans and their degradation during spore germination. J Bacteriol 127:1015–1017
    [Google Scholar]
  34. Shibata H., Ohnishi N., Takeda K., Fukunaga H., Shimamura K., Yasunobu E., Tani I., Hashimoto T. 1986; Germination of Bacillus cereus spores induced by purine ribosides and their analogs: effects of modification of base and sugar moieties of purine nucleosides on germination-inducing activity. Can J Microbiol 32:186–189
    [Google Scholar]
  35. Stephenson K., Lewis R. J. 2005; Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol Rev 29:281–301
    [Google Scholar]
  36. Ting P. T., Freiman A. 2004; The story of Clostridium botulinum: from food poisoning to Botox. Clin Med 4:258–261
    [Google Scholar]
  37. Véliz E. A., Beal P. A. 2000; C6 substitution of inosine using hexamethylphosphorous triamide in conjunction with carbon tetrahalide or N-halosuccinimide. Tetrahedron Lett 41:1695–1697
    [Google Scholar]
  38. Vittori S., Lorenzen A., Stannek C., Costanzi S., Volpini R., Ijzerman A. P., Kunzel J. K., Cristalli G. 2000; N-Cycloalkyl derivatives of adenosine and 1-deazaadenosine as agonists and partial agonists of the A1 adenosine receptor. J Med Chem 43:250–260
    [Google Scholar]
  39. Wallace L. J. M., Candlish D., De Koning H. P. 2002; Different substrate recognition motifs of human and trypanosome nucleobase transporters. Selective uptake of purine antimetabolites. J Biol Chem 277:26149–26156
    [Google Scholar]
  40. Wang R., Fu Y., Lai L. 1997; A new atom-additive method for calculating partition coefficients. J Chem Inf Comput Sci 37:615–621
    [Google Scholar]
  41. Weiner M. A., Read T. D., Hanna P. C. 2003; Identification and characterization of the gerH operon of Bacillus anthracis endospores: a differential role for purine nucleosides in germination. J Bacteriol 185:1462–1464
    [Google Scholar]
  42. Yousten A. A. 1975; Germination of Bacillus cereus endospores: a proposed role for heat shock and nucleosides. Can J Microbiol 21:1192–1197
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030270-0
Loading
/content/journal/micro/10.1099/mic.0.030270-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error