1887

Abstract

Inositol is essential in eukaryotes, and must be imported or synthesized. Inositol biosynthesis in is controlled by three non-essential genes that make up the inositol regulon: and , which together encode a heterodimeric transcriptional activator, and , which encodes a transcriptional repressor. ScOpi1p inhibits the ScIno2-ScIno4p activator in response to extracellular inositol levels. An important gene controlled by the inositol regulon is , which encodes inositol-3-phosphate synthase, a key enzyme in inositol biosynthesis. In the pathogenic yeast , homologues of the inositol regulon genes are ‘transcriptionally rewired’. Instead of regulating the gene, and regulate ribosomal genes. Another species that is a prevalent cause of infections is ; however, is phylogenetically more closely related to than . Experiments were designed to determine if homologues of the inositol regulon genes function similarly to or are transcriptionally rewired. , and regulate in a manner similar to that observed in . However, unlike in , is essential. Genetic data indicate that is a repressor that affects viability by regulating activation of a target of the inositol regulon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030072-0
2010-02-01
2020-06-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/452.html?itemId=/content/journal/micro/10.1099/mic.0.030072-0&mimeType=html&fmt=ahah

References

  1. Ambroziak J., Henry S. A.. 1994; INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J Biol Chem269:15344–15349
    [Google Scholar]
  2. Bachhawat N., Ouyang Q., Henry S. A.. 1995; Functional characterization of an inositol-sensitive upstream activation sequence in yeast. A cis-regulatory element responsible for inositol-choline mediated regulation of phospholipid biosynthesis. J Biol Chem270:25087–25095
    [Google Scholar]
  3. Bailis A. M., Lopes J. M., Kohlwein S. D., Henry S. A.. 1992; Cis and trans regulatory elements required for regulation of the CHO1 gene of Saccharomyces cerevisiae. Nucleic Acids Res20:1411–1418
    [Google Scholar]
  4. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R.. 1987; 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol154:164–175
    [Google Scholar]
  5. Calderone R. A.. 2002; Candida and Candidiasis Washington, DC: American Society for Microbiology;
  6. Chen M., Hancock L. C., Lopes J. M.. 2007; Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta1771:310–321
    [Google Scholar]
  7. Coleman D. C., Rinaldi M. G., Haynes K. A., Rex J. H., Summerbell R. C., Anaissie E. J., Li A., Sullivan D. J.. 1998; Importance of Candida species other than Candida albicans as opportunistic pathogens. Med Mycol36 (Suppl. 1):156–165
    [Google Scholar]
  8. Cormack B. P., Falkow S.. 1999; Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics151:979–987
    [Google Scholar]
  9. Cormack B. P., Ghori N., Falkow S.. 1999; An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science285:578–582
    [Google Scholar]
  10. Dickson R. C., Lester R. L.. 1999; Yeast sphingolipids. Biochim Biophys Acta1426:347–357
    [Google Scholar]
  11. El Barkani A., Haynes K., Mosch H., Frosch M., Muhlschlegel F. A.. 2000; Candida glabrata shuttle vectors suitable for translational fusions to lacZ and use of beta-galactosidase as a reporter of gene expression. Gene246:151–155
    [Google Scholar]
  12. Endoh-Yamagami S., Hirakawa K., Morioka D., Fukuda R., Ohta A.. 2007; Basic helix-loop-helix transcription factor heterocomplex of Yas1p and Yas2p regulates cytochrome P450 expression in response to alkanes in the yeast Yarrowia lipolytica. Eukaryot Cell6:734–743
    [Google Scholar]
  13. Frieman M. B., McCaffery J. M., Cormack B. P.. 2002; Modular domain structure in the Candida glabrata adhesin Epa1p, a beta1,6 glucan-cross-linked cell wall protein. Mol Microbiol46:479–492
    [Google Scholar]
  14. Goldstein A. L., McCusker J. H.. 1999; Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast15:1541–1553
    [Google Scholar]
  15. Graves J. A., Henry S. A.. 2000; Regulation of the yeast INO1 gene. The products of the INO2, INO4 and OPI1 regulatory genes are not required for repression in response to inositol. Genetics154:1485–1495
    [Google Scholar]
  16. Greenberg M. L., Lopes J. M.. 1996; Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev60:1–20
    [Google Scholar]
  17. Heyken W. T., Repenning A., Kumme J., Schuller H. J.. 2005; Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Mol Microbiol56:696–707
    [Google Scholar]
  18. Hirakawa K., Kobayashi S., Inoue T., Endoh-Yamagami S., Fukuda R., Ohta A.. 2009; Yas3p, an Opi1-family transcription factor regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J Biol Chem284:7126–7137
    [Google Scholar]
  19. Hoppen J., Dietz M., Warsow G., Rohde R., Schuller H. J.. 2007; Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae. Mol Genet Genomics278:317–330
    [Google Scholar]
  20. Ihmels J., Bergmann S., Gerami-Nejad M., Yanai I., McClellan M., Berman J., Barkai N.. 2005; Rewiring of the yeast transcriptional network through the evolution of motif usage. Science309:938–940
    [Google Scholar]
  21. Jackson J. C., Lopes J. M.. 1996; The yeast UME6 gene is required for both negative and positive transcriptional regulation of phospholipid biosynthetic gene expression. Nucleic Acids Res24:1322–1329
    [Google Scholar]
  22. Jiranek V., Graves J. A., Henry S. A.. 1998; Pleiotropic effects of the opi1 regulatory mutation of yeast: its effects on growth and on phospholipid and inositol metabolism. Microbiology144:2739–2748
    [Google Scholar]
  23. Kaur R., Domergue R., Zupancic M. L., Cormack B. P.. 2005; A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol8:378–384
    [Google Scholar]
  24. Kreger-vav Rij N. J. W.. 1984; The Yeastsa Taxonomic Study, 3rd edn. Amsterdam: Elsevier;
    [Google Scholar]
  25. Lai K., McGraw P.. 1994; Dual control of inositol transport in Saccharomyces cerevisiae by irreversible inactivation of permease and regulation of permease synthesis by INO2, INO4, and OPI1. J Biol Chem269:2245–2251
    [Google Scholar]
  26. Li Z., Brendel M.. 1993; Co-regulation with genes of phospholipid biosynthesis of the CTR/HNM1-encoded choline/nitrogen mustard permease in Saccharomyces cerevisiae. Mol Gen Genet241:680–684
    [Google Scholar]
  27. Loewen C. J., Levine T. P.. 2005; A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins. J Biol Chem280:14097–14104
    [Google Scholar]
  28. Loewen C. J., Roy A., Levine T. P.. 2003; A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J22:2025–2035
    [Google Scholar]
  29. Loewen C. J., Gaspar M. L., Jesch S. A., Delon C., Ktistakis N. T., Henry S. A., Levine T. P.. 2004; Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science304:1644–1647
    [Google Scholar]
  30. Lopes J. M., Henry S. A.. 1991; Interaction of trans and cis regulatory elements in the INO1 promoter of Saccharomyces cerevisiae. Nucleic Acids Res19:3987–3994
    [Google Scholar]
  31. Lopez F., Leube M., Gil-Mascarell R., Navarro-Avino J. P., Serrano R.. 1999; The yeast inositol monophosphatase is a lithium- and sodium-sensitive enzyme encoded by a non-essential gene pair. Mol Microbiol31:1255–1264
    [Google Scholar]
  32. Majumder A. L., Johnson M. D., Henry S. A.. 1997; 1L-myo-inositol-1-phosphate synthase. Biochim Biophys Acta1348:245–256
    [Google Scholar]
  33. Martchenko M., Levitin A., Hogues H., Nantel A., Whiteway M.. 2007; Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol17:1007–1013
    [Google Scholar]
  34. Michell R. H.. 2008; Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol9:151–161
    [Google Scholar]
  35. Nakayama H., Izuta M., Nagahashi S., Sihta E. Y., Sato Y., Yamazaki T., Arisawa M., Kitada K.. 1998; A controllable gene-expression system for the pathogenic fungus Candida glabrata. Microbiology144:2407–2415
    [Google Scholar]
  36. Nikoloff D. M., Henry S. A.. 1994; Functional characterization of the INO2 gene of Saccharomyces cerevisiae. A positive regulator of phospholipid biosynthesis. J Biol Chem269:7402–7411
    [Google Scholar]
  37. Pfaller M. A., Diekema D. J.. 2004; Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect10 (Suppl. 1):11–23
    [Google Scholar]
  38. Piarroux R., Millon L., Bardonnet K., Vagner O., Koenig H.. 1999; Are live saccharomyces yeasts harmful to patients?. Lancet353:1851–1852
    [Google Scholar]
  39. Reynolds T. B.. 2006; The Opi1p transcription factor affects expression of FLO11, Mat formation, and invasive growth in Saccharomyces cerevisiae. Eukaryot Cell5:1266–1275
    [Google Scholar]
  40. Rothstein R.. 1991; Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol194:281–301
    [Google Scholar]
  41. Schwank S., Ebbert R., Rautenstrauss K., Schweizer E., Schuller H. J.. 1995; Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res23:230–237
    [Google Scholar]
  42. Sikorski R. S., Hieter P.. 1989; A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics122:19–27
    [Google Scholar]
  43. Strahl T., Thorner J.. 2007; Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta1771:353–404
    [Google Scholar]
  44. Styles C.. 2002; How to set up a yeast laboratory. Methods Enzymol350:42–71
    [Google Scholar]
  45. Tsong A. E., Miller M. G., Raisner R. M., Johnson A. D.. 2003; Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell115:389–399
    [Google Scholar]
  46. Yamagami S., Morioka D., Fukuda R., Ohta A.. 2004; A basic helix-loop-helix transcription factor essential for cytochrome p450 induction in response to alkanes in yeast Yarrowia lipolytica. J Biol Chem279:22183–22189
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030072-0
Loading
/content/journal/micro/10.1099/mic.0.030072-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error