1887

Abstract

Inositol is essential in eukaryotes, and must be imported or synthesized. Inositol biosynthesis in is controlled by three non-essential genes that make up the inositol regulon: and , which together encode a heterodimeric transcriptional activator, and , which encodes a transcriptional repressor. ScOpi1p inhibits the ScIno2-ScIno4p activator in response to extracellular inositol levels. An important gene controlled by the inositol regulon is , which encodes inositol-3-phosphate synthase, a key enzyme in inositol biosynthesis. In the pathogenic yeast , homologues of the inositol regulon genes are ‘transcriptionally rewired’. Instead of regulating the gene, and regulate ribosomal genes. Another species that is a prevalent cause of infections is ; however, is phylogenetically more closely related to than . Experiments were designed to determine if homologues of the inositol regulon genes function similarly to or are transcriptionally rewired. , and regulate in a manner similar to that observed in . However, unlike in , is essential. Genetic data indicate that is a repressor that affects viability by regulating activation of a target of the inositol regulon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030072-0
2010-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/452.html?itemId=/content/journal/micro/10.1099/mic.0.030072-0&mimeType=html&fmt=ahah

References

  1. Ambroziak, J. & Henry, S. A. ( 1994; ). INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J Biol Chem 269, 15344–15349.
    [Google Scholar]
  2. Bachhawat, N., Ouyang, Q. & Henry, S. A. ( 1995; ). Functional characterization of an inositol-sensitive upstream activation sequence in yeast. A cis-regulatory element responsible for inositol-choline mediated regulation of phospholipid biosynthesis. J Biol Chem 270, 25087–25095.[CrossRef]
    [Google Scholar]
  3. Bailis, A. M., Lopes, J. M., Kohlwein, S. D. & Henry, S. A. ( 1992; ). Cis and trans regulatory elements required for regulation of the CHO1 gene of Saccharomyces cerevisiae. Nucleic Acids Res 20, 1411–1418.[CrossRef]
    [Google Scholar]
  4. Boeke, J. D., Trueheart, J., Natsoulis, G. & Fink, G. R. ( 1987; ). 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154, 164–175.
    [Google Scholar]
  5. Calderone, R. A. ( 2002; ). Candida and Candidiasis. Washington, DC: American Society for Microbiology.
  6. Chen, M., Hancock, L. C. & Lopes, J. M. ( 2007; ). Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta 1771, 310–321.[CrossRef]
    [Google Scholar]
  7. Coleman, D. C., Rinaldi, M. G., Haynes, K. A., Rex, J. H., Summerbell, R. C., Anaissie, E. J., Li, A. & Sullivan, D. J. ( 1998; ). Importance of Candida species other than Candida albicans as opportunistic pathogens. Med Mycol 36 (Suppl. 1), 156–165.
    [Google Scholar]
  8. Cormack, B. P. & Falkow, S. ( 1999; ). Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151, 979–987.
    [Google Scholar]
  9. Cormack, B. P., Ghori, N. & Falkow, S. ( 1999; ). An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285, 578–582.[CrossRef]
    [Google Scholar]
  10. Dickson, R. C. & Lester, R. L. ( 1999; ). Yeast sphingolipids. Biochim Biophys Acta 1426, 347–357.[CrossRef]
    [Google Scholar]
  11. El Barkani, A., Haynes, K., Mosch, H., Frosch, M. & Muhlschlegel, F. A. ( 2000; ). Candida glabrata shuttle vectors suitable for translational fusions to lacZ and use of beta-galactosidase as a reporter of gene expression. Gene 246, 151–155.[CrossRef]
    [Google Scholar]
  12. Endoh-Yamagami, S., Hirakawa, K., Morioka, D., Fukuda, R. & Ohta, A. ( 2007; ). Basic helix-loop-helix transcription factor heterocomplex of Yas1p and Yas2p regulates cytochrome P450 expression in response to alkanes in the yeast Yarrowia lipolytica. Eukaryot Cell 6, 734–743.[CrossRef]
    [Google Scholar]
  13. Frieman, M. B., McCaffery, J. M. & Cormack, B. P. ( 2002; ). Modular domain structure in the Candida glabrata adhesin Epa1p, a beta1,6 glucan-cross-linked cell wall protein. Mol Microbiol 46, 479–492.[CrossRef]
    [Google Scholar]
  14. Goldstein, A. L. & McCusker, J. H. ( 1999; ). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553.[CrossRef]
    [Google Scholar]
  15. Graves, J. A. & Henry, S. A. ( 2000; ). Regulation of the yeast INO1 gene. The products of the INO2, INO4 and OPI1 regulatory genes are not required for repression in response to inositol. Genetics 154, 1485–1495.
    [Google Scholar]
  16. Greenberg, M. L. & Lopes, J. M. ( 1996; ). Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 60, 1–20.
    [Google Scholar]
  17. Heyken, W. T., Repenning, A., Kumme, J. & Schuller, H. J. ( 2005; ). Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor. Mol Microbiol 56, 696–707.[CrossRef]
    [Google Scholar]
  18. Hirakawa, K., Kobayashi, S., Inoue, T., Endoh-Yamagami, S., Fukuda, R. & Ohta, A. ( 2009; ). Yas3p, an Opi1-family transcription factor regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J Biol Chem 284, 7126–7137.[CrossRef]
    [Google Scholar]
  19. Hoppen, J., Dietz, M., Warsow, G., Rohde, R. & Schuller, H. J. ( 2007; ). Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae. Mol Genet Genomics 278, 317–330.[CrossRef]
    [Google Scholar]
  20. Ihmels, J., Bergmann, S., Gerami-Nejad, M., Yanai, I., McClellan, M., Berman, J. & Barkai, N. ( 2005; ). Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309, 938–940.[CrossRef]
    [Google Scholar]
  21. Jackson, J. C. & Lopes, J. M. ( 1996; ). The yeast UME6 gene is required for both negative and positive transcriptional regulation of phospholipid biosynthetic gene expression. Nucleic Acids Res 24, 1322–1329.[CrossRef]
    [Google Scholar]
  22. Jiranek, V., Graves, J. A. & Henry, S. A. ( 1998; ). Pleiotropic effects of the opi1 regulatory mutation of yeast: its effects on growth and on phospholipid and inositol metabolism. Microbiology 144, 2739–2748.[CrossRef]
    [Google Scholar]
  23. Kaur, R., Domergue, R., Zupancic, M. L. & Cormack, B. P. ( 2005; ). A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8, 378–384.[CrossRef]
    [Google Scholar]
  24. Kreger-vav Rij, N. J. W. ( 1984; ). The Yeastsa Taxonomic Study, 3rd edn. Amsterdam: Elsevier.
  25. Lai, K. & McGraw, P. ( 1994; ). Dual control of inositol transport in Saccharomyces cerevisiae by irreversible inactivation of permease and regulation of permease synthesis by INO2, INO4, and OPI1. J Biol Chem 269, 2245–2251.
    [Google Scholar]
  26. Li, Z. & Brendel, M. ( 1993; ). Co-regulation with genes of phospholipid biosynthesis of the CTR/HNM1-encoded choline/nitrogen mustard permease in Saccharomyces cerevisiae. Mol Gen Genet 241, 680–684.
    [Google Scholar]
  27. Loewen, C. J. & Levine, T. P. ( 2005; ). A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins. J Biol Chem 280, 14097–14104.[CrossRef]
    [Google Scholar]
  28. Loewen, C. J., Roy, A. & Levine, T. P. ( 2003; ). A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 22, 2025–2035.[CrossRef]
    [Google Scholar]
  29. Loewen, C. J., Gaspar, M. L., Jesch, S. A., Delon, C., Ktistakis, N. T., Henry, S. A. & Levine, T. P. ( 2004; ). Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304, 1644–1647.[CrossRef]
    [Google Scholar]
  30. Lopes, J. M. & Henry, S. A. ( 1991; ). Interaction of trans and cis regulatory elements in the INO1 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 19, 3987–3994.[CrossRef]
    [Google Scholar]
  31. Lopez, F., Leube, M., Gil-Mascarell, R., Navarro-Avino, J. P. & Serrano, R. ( 1999; ). The yeast inositol monophosphatase is a lithium- and sodium-sensitive enzyme encoded by a non-essential gene pair. Mol Microbiol 31, 1255–1264.[CrossRef]
    [Google Scholar]
  32. Majumder, A. L., Johnson, M. D. & Henry, S. A. ( 1997; ). 1L-myo-inositol-1-phosphate synthase. Biochim Biophys Acta 1348, 245–256.[CrossRef]
    [Google Scholar]
  33. Martchenko, M., Levitin, A., Hogues, H., Nantel, A. & Whiteway, M. ( 2007; ). Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17, 1007–1013.[CrossRef]
    [Google Scholar]
  34. Michell, R. H. ( 2008; ). Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9, 151–161.[CrossRef]
    [Google Scholar]
  35. Nakayama, H., Izuta, M., Nagahashi, S., Sihta, E. Y., Sato, Y., Yamazaki, T., Arisawa, M. & Kitada, K. ( 1998; ). A controllable gene-expression system for the pathogenic fungus Candida glabrata. Microbiology 144, 2407–2415.[CrossRef]
    [Google Scholar]
  36. Nikoloff, D. M. & Henry, S. A. ( 1994; ). Functional characterization of the INO2 gene of Saccharomyces cerevisiae. A positive regulator of phospholipid biosynthesis. J Biol Chem 269, 7402–7411.
    [Google Scholar]
  37. Pfaller, M. A. & Diekema, D. J. ( 2004; ). Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect 10 (Suppl. 1), 11–23.[CrossRef]
    [Google Scholar]
  38. Piarroux, R., Millon, L., Bardonnet, K., Vagner, O. & Koenig, H. ( 1999; ). Are live saccharomyces yeasts harmful to patients? Lancet 353, 1851–1852.[CrossRef]
    [Google Scholar]
  39. Reynolds, T. B. ( 2006; ). The Opi1p transcription factor affects expression of FLO11, Mat formation, and invasive growth in Saccharomyces cerevisiae. Eukaryot Cell 5, 1266–1275.[CrossRef]
    [Google Scholar]
  40. Rothstein, R. ( 1991; ). Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194, 281–301.
    [Google Scholar]
  41. Schwank, S., Ebbert, R., Rautenstrauss, K., Schweizer, E. & Schuller, H. J. ( 1995; ). Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res 23, 230–237.[CrossRef]
    [Google Scholar]
  42. Sikorski, R. S. & Hieter, P. ( 1989; ). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.
    [Google Scholar]
  43. Strahl, T. & Thorner, J. ( 2007; ). Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771, 353–404.[CrossRef]
    [Google Scholar]
  44. Styles, C. ( 2002; ). How to set up a yeast laboratory. Methods Enzymol 350, 42–71.
    [Google Scholar]
  45. Tsong, A. E., Miller, M. G., Raisner, R. M. & Johnson, A. D. ( 2003; ). Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115, 389–399.[CrossRef]
    [Google Scholar]
  46. Yamagami, S., Morioka, D., Fukuda, R. & Ohta, A. ( 2004; ). A basic helix-loop-helix transcription factor essential for cytochrome p450 induction in response to alkanes in yeast Yarrowia lipolytica. J Biol Chem 279, 22183–22189.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030072-0
Loading
/content/journal/micro/10.1099/mic.0.030072-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error