1887

Abstract

Membrane-located proteins (IIC and IID) of the mannose-phosphotransferase system (man-PTS) have previously been shown to serve as target receptors for several bacteriocins. Although many bacteria contain at least one such man-PTS in their genome, most bacteriocins display a narrow inhibitory spectrum, targeting predominantly bacteria closely related to the producers. In the present study we have analysed the receptor spectrum of one-peptide bacteriocins of class II. A phylogenetic analysis of 86 man-PTSs from a wide range of bacterial genera grouped the man-PTSs into three main clusters (groups I–III). Fourteen man-PTSs distributed across the phylogenetic tree were selected for experimental analysis in a heterologous host. Only members of group I could serve as receptors for class IIa bacteriocins, and the receptor efficiencies varied in a pattern directly related to their phylogenetic position. A multiple sequence alignment of IIC and IID proteins revealed three sequence regions (two in IIC and one in IID) that distinguish members of the bacteriocin-susceptible group from those of the other groups, suggesting that these amino acid regions confer the specific bacteriocin receptor function. Moreover, we demonstrated that variation in sensitivity might also exist within the same species due to differential expression levels of the receptor, since three strains of harbouring identical man-PTSs were shown to display different expression levels of a man-PTS gene that corresponded to the variation in bacteriocin sensitivity. Together, the results of our study show that the level of bacteriocin susceptibility for a bacterial cell is primarily determined by differences in its man-PTS proteins, although the expression levels of the corresponding genes also play an important role.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030015-0
2009-09-01
2020-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2949.html?itemId=/content/journal/micro/10.1099/mic.0.030015-0&mimeType=html&fmt=ahah

References

  1. Anisimova M., Gascuel O.. 2006; Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol55:539–552
    [Google Scholar]
  2. Arous S., Dalet K., Héchard Y.. 2004; Involvement of the mpo operon in resistance to class IIa bacteriocins in Listeria monocytogenes. FEMS Microbiol Lett238:37–41
    [Google Scholar]
  3. Bolotin A., Quinquis B., Renault P., Sorokin A., Ehrlich S. D., Kulakauskas S., Lapidus A., Goltsman E., Mazur M.. other authors 2004; Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol22:1554–1558
    [Google Scholar]
  4. Brotz H., Josten M., Wiedemann I., Schneider U., Gotz F., Bierbaum G., Sahl H. G.. 1998; Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol30:317–327
    [Google Scholar]
  5. Chaillou S., Champomier-Verges M. C., Cornet M., Crutz-Le Coq A. M., Dudez A. M., Martin V., Beaufils S., Darbon-Rongere E., Bossy R.. other authors 2005; The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol23:1527–1533
    [Google Scholar]
  6. Chevenet F., Brun C., Banuls A. L., Jacq B., Christen R.. 2006; TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics7:439
    [Google Scholar]
  7. Chopin A., Chopin M. C., Moillo-Batt A., Langella P.. 1984; Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid11:260–263
    [Google Scholar]
  8. Cintas L. M., Casaus P., Herranz C., Havarstein L. S., Holo H., Hernandez P. E., Nes I. F.. 2000; Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol182:6806–6814
    [Google Scholar]
  9. Dalet K., Briand C., Cenatiempo Y., Héchard Y.. 2000; The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol41:441–443
    [Google Scholar]
  10. Dalet K., Cenatiempo Y., Cossart P., Héchard Y.. 2001; A σ 54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology147:3263–3269
    [Google Scholar]
  11. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V.. other authors 2008; Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res36:W465–W469
    [Google Scholar]
  12. de Ruyter P. G., Kuipers O. P., de Vos W. M.. 1996; Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol62:3662–3667
    [Google Scholar]
  13. Deutscher J., Francke C., Postma P. W.. 2006; How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev70:939–1031
    [Google Scholar]
  14. Diep D. B., Godager L., Brede D., Nes I. F.. 2006; Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiology152:1649–1659
    [Google Scholar]
  15. Diep D. B., Skaugen M., Salehian Z., Holo H., Nes I. F.. 2007; Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A104:2384–2389
    [Google Scholar]
  16. Drider D., Fimland G., Héchard Y., McMullen L. M., Prévost H.. 2006; The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev70:564–582
    [Google Scholar]
  17. Edgar R. C.. 2004; MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797
    [Google Scholar]
  18. Eijsink V. G. H., Skeie M., Middelhoven P. H., Brurberg M. B., Nes I. F.. 1998; Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol64:3275–3281
    [Google Scholar]
  19. Fimland G., Johnsen L., Dalhus B., Nissen-Meyer J.. 2005; Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci11:688–696
    [Google Scholar]
  20. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P.. other authors 2001; Comparative genomics of Listeria species. Science294:849–852
    [Google Scholar]
  21. Gravesen A., Ramnath M., Rechinger K. B., Andersen N., Jansch L., Héchard Y., Hastings J. W., Knochel S.. 2002; High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology148:2361–2369
    [Google Scholar]
  22. Guindon S., Gascuel O.. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704
    [Google Scholar]
  23. Héchard Y., Pelletier C., Cenatiempo Y., Frère J.. 2001; Analysis of σ 54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology147:1575–1580
    [Google Scholar]
  24. Henderson J. T., Chopko A. L., van Wassenaar P. D.. 1992; Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch Biochem Biophys295:5–12
    [Google Scholar]
  25. Higuchi R.. 1990; Recombinant PCR. . In PCR Protocols: a Guide to Methods and Applications pp177–183 Edited by Innes M. L., Gelfand D. H., Sninsky J. J., White T. J.. San Diego: Academic Press;
    [Google Scholar]
  26. Holo H., Nes I. F.. 1989; High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol55:3119–3123
    [Google Scholar]
  27. Holo H., Nilssen O., Nes I. F.. 1991; Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol173:3879–3887
    [Google Scholar]
  28. Katla T., Naterstad K., Vancanneyt M., Swings J., Axelsson L.. 2003; Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Appl Environ Microbiol69:4431–4437
    [Google Scholar]
  29. Kleerebezem M., Beerthuyzen M. M., Vaughan E. E., de Vos W. M., Kuipers O. P.. 1997; Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol63:4581–4584
    [Google Scholar]
  30. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O. P., Leer R., Tarchini R., Peters S. A., Sandbrink H. M.. other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A100:1990–1995
    [Google Scholar]
  31. Kok J., Holo H., van Belkum M. J., Haandrikman A. J., Nes I. F.. 1993; Nonnisin bacteriocins in lactococci: biochemistry, genetics, and mode of action. In Bacteriocins of Lactic Acid Bacteria pp121–150 Edited by Hoover D. G., Steenson L. R. San Diego: Academic Press;
    [Google Scholar]
  32. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580
    [Google Scholar]
  33. Kuipers O. P., de Ruyter P. G. G. A., Kleerebezem M., de Vos W. M.. 1998; Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol64:15–21
    [Google Scholar]
  34. Lauret R., Morel-Deville F., Berthier F., Champomier-Verges M., Postma P., Ehrlich S. D., Zagorec M.. 1996; Carbohydrate utilization in Lactobacillus sake. Appl Environ Microbiol62:1922–1927
    [Google Scholar]
  35. Le Marrec C., Hyronimus B., Bressollier P., Verneuil B., Urdaci M. C.. 2000; Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl Environ Microbiol66:5213–5220
    [Google Scholar]
  36. Martinez B., Bottiger T., Schneider T., Rodriguez A., Sahl H. G., Wiedemann I.. 2008; Specific interaction of the unmodified bacteriocin lactococcin 972 with the cell wall precursor lipid II. Appl Environ Microbiol74:4666–4670
    [Google Scholar]
  37. Marugg J. D., Gonzalez C. F., Kunka B. S., Ledeboer A. M., Pucci M. J., Toonen M. Y., Walker S. A., Zoetmulder L. C., Vandenbergh P. A.. 1992; Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol58:2360–2367
    [Google Scholar]
  38. Moretro T., Naterstad K., Wang E., Aasen I. M., Chaillou S., Zagorec M., Axelsson L.. 2005; Sakacin P non-producing Lactobacillus sakei strains contain homologues of the sakacin P gene cluster. Res Microbiol156:949–960
    [Google Scholar]
  39. Nes I. F., Diep D. B., Havarstein L. S., Brurberg M. B., Eijsink V., Holo H.. 1996; Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek70:113–128
    [Google Scholar]
  40. Nes I. F., Yoon S.-S., Diep D. B.. 2007; Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Sci Biotechnol16:675–690
    [Google Scholar]
  41. Nieto Lozano J. C., Meyer J. N., Sletten K., Pelaz C., Nes I. F.. 1992; Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J Gen Microbiol138:1985–1990
    [Google Scholar]
  42. Nissen-Meyer J., Rogne P., Oppegard C., Haugen H. S., Kristiansen P. E.. 2009; Structure–function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by Gram-positive bacteria. Curr Pharm Biotechnol10:19–37
    [Google Scholar]
  43. Postma P. W., Lengeler J. W., Jacobson G. R.. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev57:543–594
    [Google Scholar]
  44. Ramnath M., Beukes M., Tamura K., Hastings J. W.. 2000; Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol66:3098–3101
    [Google Scholar]
  45. Ramnath M., Arous S., Gravesen A., Hastings J. W., Héchard Y.. 2004; Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology150:2663–2668
    [Google Scholar]
  46. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B.. 1989; In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother33:1588–1591
    [Google Scholar]
  47. Schillinger U., Lucke F. K.. 1989; Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol55:1901–1906
    [Google Scholar]
  48. Thompson J., Chassy B. M.. 1982; Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-d-glucose uncouples energy production from growth. J Bacteriol151:1454–1465
    [Google Scholar]
  49. Tichaczek P. S., Nissen-Meyer J., Nes I. F., Vogel R. F., Hammes W.. 1992; Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Syst Appl Microbiol15:460–468
    [Google Scholar]
  50. Tichaczek P. S., Vogel R. F., Hammes W. P.. 1994; Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673. Microbiology140:361–367
    [Google Scholar]
  51. Vadyvaloo V., Hastings J. W., van der Merwe M. J., Rautenbach M.. 2002; Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol68:5223–5230
    [Google Scholar]
  52. Vadyvaloo V., Arous S., Gravesen A., Héchard Y., Chauhan-Haubrock R., Hastings J. W., Rautenbach M.. 2004; Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology150:3025–3033
    [Google Scholar]
  53. Wiedemann I., Breukink E., van Kraaij C., Kuipers O. P., Bierbaum G., de Kruijff B., Sahl H. G.. 2001; Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem276:1772–1779
    [Google Scholar]
  54. Zúñiga M., Comas I., Linaje R., Monedero V., Yebra M. J., Esteban C. D., Deutscher J., Perez-Martinez G., Gonzalez-Candelas F.. 2005; Horizontal gene transfer in the molecular evolution of mannose PTS transporters. Mol Biol Evol22:1673–1685
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030015-0
Loading
/content/journal/micro/10.1099/mic.0.030015-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error