1887

Abstract

plasmid ColE1 lacks active partitioning, and copies are distributed randomly to daughter cells at division. The plasmid is maintained stably in the bacterial population as long as its copy number remains high. The accumulation of plasmid dimers and higher multimers depresses copy number, and is an important cause of multicopy plasmid instability. ColE1 dimers are restored to the monomeric state by site-specific recombination, which requires the host-encoded proteins XerCD, ArgR and PepA acting at the plasmid site. In addition, a 70 nt RNA expressed from the site of plasmid dimers delays the division of dimer-containing cells. Here, we report that the global regulator FIS binds to in a sequence-specific manner, close to the Rcd promoter (P). FIS is not required for plasmid dimer resolution, but is essential for repression of P in plasmid monomers. Repression also requires the XerCD recombinase, but not ArgR or PepA. We propose a model for monomer–dimer control of P in which the promoter is repressed in plasmid monomers by the concerted action of FIS and XerCD. Rcd transcription is triggered in plasmid dimers by the lifting of XerCD-mediated repression in the synaptic complex.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029777-0
2009-08-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2676.html?itemId=/content/journal/micro/10.1099/mic.0.029777-0&mimeType=html&fmt=ahah

References

  1. Balding, C., Blaby, I. & Summers, D. ( 2006; ). A mutational analysis of the ColE1-encoded cell cycle regulator Rcd confirms its role in plasmid stability. Plasmid 56, 68–73.[CrossRef]
    [Google Scholar]
  2. Blakely, G., May, G., McCulloch, R., Arciszewska, L. K., Burke, M., Lovett, S. T. & Sherratt, D. J. ( 1993; ). 2 related recombinases are required for site-specific recombination at dif and cer in Escherichia coli K12. Cell 75, 351–361.[CrossRef]
    [Google Scholar]
  3. Bullock, W. O., Fernandez, J. M. & Short, J. M. ( 1987; ). XL1-Blue: a high-efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques 5, 376–378.
    [Google Scholar]
  4. Chant, E. L. & Summers, D. K. ( 2007; ). Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol 63, 35–43.[CrossRef]
    [Google Scholar]
  5. Chatwin, H. M. & Summers, D. K. ( 2001; ). Monomer–dimer control of the ColE1 P cer promoter. Microbiology 147, 3071–3081.
    [Google Scholar]
  6. Colloms, S. D., Sykora, P., Szatmari, G. & Sherratt, D. J. ( 1990; ). Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family. J Bacteriol 172, 6973–6980.
    [Google Scholar]
  7. Colloms, S. D., McCulloch, R., Grant, K., Neilson, L. & Sherratt, D. J. ( 1996; ). Xer-mediated site-specific recombination in vitro. EMBO J 15, 1172–1181.
    [Google Scholar]
  8. Finkel, S. E. & Johnson, R. C. ( 1992; ). The FIS protein: it's not just for DNA inversion any more. Mol Microbiol 6, 3257–3265.[CrossRef]
    [Google Scholar]
  9. Gillen, J. R., Willis, D. K. & Clark, A. J. ( 1981; ). Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12. J Bacteriol 145, 521–532.
    [Google Scholar]
  10. Guhathakurta, A., Viney, I. & Summers, D. ( 1996; ). Accessory proteins impose site selectivity during ColE1 dimer resolution. Mol Microbiol 20, 613–620.[CrossRef]
    [Google Scholar]
  11. Hengen, P. N., Bartram, S. L., Stewart, L. E. & Schneider, T. D. ( 1997; ). Information analysis of FIS binding sites. Nucleic Acids Res 25, 4994–5002.[CrossRef]
    [Google Scholar]
  12. Higuchi, R., Krummel, B. & Saiki, R. K. ( 1988; ). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16, 7351–7367.[CrossRef]
    [Google Scholar]
  13. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. ( 1989; ). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59.[CrossRef]
    [Google Scholar]
  14. Hodgman, T. C., Griffiths, H. & Summers, D. K. ( 1998; ). Nucleoprotein architecture and ColE1 dimer resolution: an hypothesis. Mol Microbiol 29, 545–558.[CrossRef]
    [Google Scholar]
  15. Johnson, R. C., Ball, C. A., Pfeffer, D. & Simon, M. I. ( 1988; ). Isolation of the gene encoding the Hin recombinational enhancer binding protein. Proc Natl Acad Sci U S A 85, 3484–3488.[CrossRef]
    [Google Scholar]
  16. Kennedy, C. K. ( 1971; ). Induction of colicin production by high temperature or inhibition of protein synthesis. J Bacteriol 108, 10–19.
    [Google Scholar]
  17. Kitagawa, M., Ara, T., Arifuzzaman, M., Ioka-Nakamichi, T., Inamoto, E., Toyonaga, H. & Mori, H. ( 2005; ). Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12, 291–299.
    [Google Scholar]
  18. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  19. Muller-Hill, B. ( 2006; ). What is life? The paradigm of DNA and protein cooperation at high local concentrations. Mol Microbiol 60, 253–255.[CrossRef]
    [Google Scholar]
  20. Nordström, K., Ingram, L. C. & Lundback, A. ( 1972; ). Mutations in R-factors of Escherichia coli causing an increased number of R-factor copies per chromosome. J Bacteriol 110, 562–569.
    [Google Scholar]
  21. Patient, M. E. & Summers, D. K. ( 1993; ). ColE1 multimer formation triggers inhibition of E. coli cell division. Mol Microbiol 9, 1089–1095.[CrossRef]
    [Google Scholar]
  22. Stirling, C. J., Szatmari, G., Stewart, G., Smith, M. C. M. & Sherratt, D. J. ( 1988; ). The arginine repressor is essential for plasmid stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7, 4389–4395.
    [Google Scholar]
  23. Stirling, C. J., Colloms, S. D., Collins, J. F., Szatmari, G. & Sherratt, D. J. ( 1989; ). xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 8, 1623–1627.
    [Google Scholar]
  24. Strater, N., Sherratt, D. J. & Colloms, S. D. ( 1999; ). X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer site-specific recombination. EMBO J 18, 4513–4522.[CrossRef]
    [Google Scholar]
  25. Summers, D. K. & Sherratt, D. J. ( 1984; ). Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36, 1097–1103.[CrossRef]
    [Google Scholar]
  26. Summers, D. K., Beton, C. W. H. & Withers, H. L. ( 1993; ). Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol Microbiol 8, 1031–1038.[CrossRef]
    [Google Scholar]
  27. Vieira, J. & Messing, J. ( 1982; ). The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19, 259–268.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029777-0
Loading
/content/journal/micro/10.1099/mic.0.029777-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error