1887

Abstract

Activation of macrophages by interferon gamma (IFN-) and the subsequent production of nitric oxide (NO) are critical for the host defence against serovar Typhimurium infection. We report here the inhibition of IFN--induced NO production in RAW264.7 macrophages infected with wild-type . This phenomenon was shown to be dependent on the gene, which encodes a potential nitrite transporter. We observed a higher NO output from IFN--treated macrophages infected with a mutant of . The mutant also showed significantly decreased intracellular proliferation in a NO-dependent manner in activated RAW264.7 macrophages and in liver, spleen and secondary lymph nodes of mice, which was restored by complementing the gene . Under acidified nitrite stress, a twofold more pronounced NO-mediated repression of SPI2 was observed in the knockout strain compared to the wild-type. This enhanced SPI2 repression in the knockout led to a higher level of STAT-1 phosphorylation and inducible nitric oxide synthase (iNOS) expression than seen with the wild-type strain. In iNOS knockout mice, the organ load of the knockout strain was similar to that of the wild-type strain, indicating that the mutant is exclusively sensitive to the host nitrosative stress. Taken together, these results reveal that intracellular evade killing in activated macrophages by downregulating IFN--induced NO production, and they highlight the critical role of as a virulence gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029611-0
2009-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2476.html?itemId=/content/journal/micro/10.1099/mic.0.029611-0&mimeType=html&fmt=ahah

References

  1. Balestieri, F. M., Queiroz, A. R., Scavone, C., Costa, V. M., Barral-Netto, M. & Abrahamsohn Ide, A. ( 2002; ). Leishmania (L.) amazonensis-induced inhibition of nitric oxide synthesis in host macrophages. Microbes Infect 4, 23–29.[CrossRef]
    [Google Scholar]
  2. Bang, I. S., Liu, L., Vazquez-Torres, A., Crouch, M. L., Stamler, J. S. & Fang, F. C. ( 2006; ). Maintenance of nitric oxide and redox homeostasis by the Salmonella flavohemoglobin Hmp. J Biol Chem 281, 28039–28047.[CrossRef]
    [Google Scholar]
  3. Bao, S., Beagley, K. W., France, M. P., Shen, J. & Husband, A. J. ( 2000; ). Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology 99, 464–472.[CrossRef]
    [Google Scholar]
  4. Beuzon, C. R. & Holden, D. W. ( 2001; ). Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect 3, 1345–1352.[CrossRef]
    [Google Scholar]
  5. Boehm, U., Klamp, T., Groot, M. & Howard, J. C. ( 1997; ). Cellular responses to interferon-gamma. Annu Rev Immunol 15, 749–795.[CrossRef]
    [Google Scholar]
  6. Brett, P. J., Burtnick, M. N., Su, H., Nair, V. & Gherardini, F. C. ( 2008; ). iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages. Cell Microbiol 10, 487–498.
    [Google Scholar]
  7. Chakravortty, D. & Hensel, M. ( 2003; ). Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect 5, 621–627.[CrossRef]
    [Google Scholar]
  8. Chakravortty, D., Hansen-Wester, I. & Hensel, M. ( 2002; ). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195, 1155–1166.[CrossRef]
    [Google Scholar]
  9. Cherayil, B. J. & Antos, D. ( 2001; ). Inducible nitric oxide synthase and Salmonella infection. Microbes Infect 3, 771–776.[CrossRef]
    [Google Scholar]
  10. Clegg, S., Yu, F., Griffiths, L. & Cole, J. A. ( 2002; ). The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol Microbiol 44, 143–155.[CrossRef]
    [Google Scholar]
  11. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  12. De Groote, M. A., Granger, D., Xu, Y., Campbell, G., Prince, R. & Fang, F. C. ( 1995; ). Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci U S A 92, 6399–6403.[CrossRef]
    [Google Scholar]
  13. Deiwick, J., Nikolaus, T., Erdogan, S. & Hensel, M. ( 1999; ). Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol Microbiol 31, 1759–1773.[CrossRef]
    [Google Scholar]
  14. Evans, T. G., Thai, L., Granger, D. L. & Hibbs, J. B., Jr ( 1993; ). Effect of in vivo inhibition of nitric oxide production in murine leishmaniasis. J Immunol 151, 907–915.
    [Google Scholar]
  15. Fields, P. I., Swanson, R. V., Haidaris, C. G. & Heffron, F. ( 1986; ). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A 83, 5189–5193.[CrossRef]
    [Google Scholar]
  16. Gilberthorpe, N. J., Lee, M. E., Stevanin, T. M., Read, R. C. & Poole, R. K. ( 2007; ). NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-γ-stimulated J774.2 macrophages. Microbiology 153, 1756–1771.[CrossRef]
    [Google Scholar]
  17. Hanano, R. & Kaufmann, S. H. ( 1995; ). Nitric oxide production and mycobacterial growth inhibition by murine alveolar macrophages: the sequence of rIFN-gamma stimulation and Mycobacterium bovis BCG infection determines macrophage activation. Immunol Lett 45, 23–27.[CrossRef]
    [Google Scholar]
  18. Hensel, M. ( 2000; ). Salmonella pathogenicity island 2. Mol Microbiol 36, 1015–1023.[CrossRef]
    [Google Scholar]
  19. Kawakami, K., Zhang, T., Qureshi, M. H. & Saito, A. ( 1997; ). Cryptococcus neoformans inhibits nitric oxide production by murine peritoneal macrophages stimulated with interferon-gamma and lipopolysaccharide. Cell Immunol 180, 47–54.[CrossRef]
    [Google Scholar]
  20. Kharitonov, V. G., Sundquist, A. R. & Sharma, V. S. ( 1994; ). Kinetics of nitric oxide autoxidation in aqueous solution. J Biol Chem 269, 5881–5883.
    [Google Scholar]
  21. Kim, C. C., Monack, D. & Falkow, S. ( 2003; ). Modulation of virulence by two acidified nitrite-responsive loci of Salmonella enterica serovar Typhimurium. Infect Immun 71, 3196–3205.[CrossRef]
    [Google Scholar]
  22. Lahiri, A., Das, P. & Chakravortty, D. ( 2008a; ). Arginase modulates Salmonella induced nitric oxide production in RAW264.7 macrophages and is required for Salmonella pathogenesis in mice model of infection. Microbes Infect 10, 1166–1174.[CrossRef]
    [Google Scholar]
  23. Lahiri, A., Das, P. & Chakravortty, D. ( 2008b; ). The LysR-type transcriptional regulator Hrg counteracts phagocyte oxidative burst and imparts survival advantage to Salmonella enterica serovar Typhimurium. Microbiology 154, 2837–2846.[CrossRef]
    [Google Scholar]
  24. Lindgren, S. W., Stojiljkovic, I. & Heffron, F. ( 1996; ). Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc Natl Acad Sci U S A 93, 4197–4201.[CrossRef]
    [Google Scholar]
  25. MacMicking, J., Xie, Q. W. & Nathan, C. ( 1997; ). Nitric oxide and macrophage function. Annu Rev Immunol 15, 323–350.[CrossRef]
    [Google Scholar]
  26. Mastroeni, P., Vazquez-Torres, A., Fang, F. C., Xu, Y., Khan, S., Hormaeche, C. E. & Dougan, G. ( 2000; ). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192, 237–248.[CrossRef]
    [Google Scholar]
  27. McCollister, B. D., Bourret, T. J., Gill, R., Jones-Carson, J. & Vazquez-Torres, A. ( 2005; ). Repression of SPI2 transcription by nitric oxide-producing, IFNγ-activated macrophages promotes maturation of Salmonella phagosomes. J Exp Med 202, 625–635.[CrossRef]
    [Google Scholar]
  28. Miller, S. I., Hohmann, E. L. & Pegues, D. A. ( 1995; ). Salmonella (Including Salmonella Typhi), vol. 2. New York: Churchill Livingston.
  29. Mills, P. C., Rowley, G., Spiro, S., Hinton, J. C. & Richardson, D. J. ( 2008; ). A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology 154, 1218–1228.[CrossRef]
    [Google Scholar]
  30. Miranda, K. M., Espey, M. G. & Wink, D. A. ( 2001; ). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5, 62–71.[CrossRef]
    [Google Scholar]
  31. Miyagi, K., Kawakami, K. & Saito, A. ( 1997; ). Role of reactive nitrogen and oxygen intermediates in gamma interferon-stimulated murine macrophage bactericidal activity against Burkholderia pseudomallei. Infect Immun 65, 4108–4113.
    [Google Scholar]
  32. Nairz, M., Fritsche, G., Brunner, P., Talasz, H., Hantke, K. & Weiss, G. ( 2008; ). Interferon-gamma limits the availability of iron for intramacrophage Salmonella typhimurium. Eur J Immunol 38, 1923–1936.[CrossRef]
    [Google Scholar]
  33. Ochman, H., Soncini, F. C., Solomon, F. & Groisman, E. A. ( 1996; ). Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 93, 7800–7804.[CrossRef]
    [Google Scholar]
  34. Pacher, P. & Szabo, C. ( 2006; ). Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 6, 136–141.[CrossRef]
    [Google Scholar]
  35. Pakianathan, D. R. & Kuhn, R. E. ( 1994; ). Trypanosoma cruzi affects nitric oxide production by murine peritoneal macrophages. J Parasitol 80, 432–437.[CrossRef]
    [Google Scholar]
  36. Pan, Q., Kravchenko, V., Katz, A., Huang, S., Ii, M., Mathison, J. C., Kobayashi, K., Flavell, R. A., Schreiber, R. D. & other authors ( 2006; ). NF-κ B-inducing kinase regulates selected gene expression in the Nod2 signaling pathway. Infect Immun 74, 2121–2127.[CrossRef]
    [Google Scholar]
  37. Proudfoot, L., O'Donnell, C. A. & Liew, F. Y. ( 1995; ). Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages. Eur J Immunol 25, 745–750.[CrossRef]
    [Google Scholar]
  38. Proudfoot, L., Nikolaev, A. V., Feng, G. J., Wei, W. Q., Ferguson, M. A., Brimacombe, J. S. & Liew, F. Y. ( 1996; ). Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages. Proc Natl Acad Sci U S A 93, 10984–10989.[CrossRef]
    [Google Scholar]
  39. Ramarathinam, L., Shaban, R. A., Niesel, D. W. & Klimpel, G. R. ( 1991; ). Interferon gamma (IFN-γ) production by gut-associated lymphoid tissue and spleen following oral Salmonella typhimurium challenge. Microb Pathog 11, 347–356.[CrossRef]
    [Google Scholar]
  40. Rottenberg, M. E., Gigliotti Rothfuchs, A., Gigliotti, D., Ceausu, M., Une, C., Levitsky, V. & Wigzell, H. ( 2000; ). Regulation and role of IFN-gamma in the innate resistance to infection with Chlamydia pneumoniae. J Immunol 164, 4812–4818.[CrossRef]
    [Google Scholar]
  41. Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. ( 1996; ). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93, 2593–2597.[CrossRef]
    [Google Scholar]
  42. Stuehr, D. J. ( 1997; ). Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol 37, 339–359.[CrossRef]
    [Google Scholar]
  43. Suzuki, Y., Orellana, M. A., Schreiber, R. D. & Remington, J. S. ( 1988; ). Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 240, 516–518.[CrossRef]
    [Google Scholar]
  44. Szeto, J., Namolovan, A., Osborne, S. E., Coombes, B. K. & Brumell, J. H. ( 2009; ). Salmonella-containing vacuoles display centrifugal movement associated with cell-to-cell transfer in epithelial cells. Infect Immun 77, 996–1007.[CrossRef]
    [Google Scholar]
  45. Uchiya, K. & Nikai, T. ( 2005; ). Salmonella pathogenicity island 2-dependent expression of suppressor of cytokine signaling 3 in macrophages. Infect Immun 73, 5587–5594.[CrossRef]
    [Google Scholar]
  46. Uchiya, K., Barbieri, M. A., Funato, K., Shah, A. H., Stahl, P. D. & Groisman, E. A. ( 1999; ). A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18, 3924–3933.[CrossRef]
    [Google Scholar]
  47. Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H. & Fang, F. C. ( 2000; ). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192, 227–236.[CrossRef]
    [Google Scholar]
  48. Waterman, S. R. & Holden, D. W. ( 2003; ). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5, 501–511.[CrossRef]
    [Google Scholar]
  49. Wu, Q. & Stewart, V. ( 1998; ). NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al. J Bacteriol 180, 1311–1322.
    [Google Scholar]
  50. Xie, Q. & Nathan, C. ( 1994; ). The high-output nitric oxide pathway: role and regulation. J Leukoc Biol 56, 576–582.
    [Google Scholar]
  51. Yu, X. J., Ruiz-Albert, J., Unsworth, K. E., Garvis, S., Liu, M. & Holden, D. W. ( 2002; ). SpiC is required for secretion of Salmonella pathogenicity island 2 type III secretion system proteins. Cell Microbiol 4, 531–540.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029611-0
Loading
/content/journal/micro/10.1099/mic.0.029611-0
Loading

Data & Media loading...

Supplements

Strains and vectors used [ PDF] (58 kb) Oligonucleotides used [ PDF] (35 kb) Competitive index experiment [ PDF] (49 kb) NirC is conserved in different bacterial species [ PDF] (25 kb) MTT assay [ PDF] (47 kb) Intracellular survival assay in activated macrophages [ PDF] (46 kb)

PDF

Strains and vectors used [ PDF] (58 kb) Oligonucleotides used [ PDF] (35 kb) Competitive index experiment [ PDF] (49 kb) NirC is conserved in different bacterial species [ PDF] (25 kb) MTT assay [ PDF] (47 kb) Intracellular survival assay in activated macrophages [ PDF] (46 kb)

PDF

Strains and vectors used [ PDF] (58 kb) Oligonucleotides used [ PDF] (35 kb) Competitive index experiment [ PDF] (49 kb) NirC is conserved in different bacterial species [ PDF] (25 kb) MTT assay [ PDF] (47 kb) Intracellular survival assay in activated macrophages [ PDF] (46 kb)

PDF

Strains and vectors used [ PDF] (58 kb) Oligonucleotides used [ PDF] (35 kb) Competitive index experiment [ PDF] (49 kb) NirC is conserved in different bacterial species [ PDF] (25 kb) MTT assay [ PDF] (47 kb) Intracellular survival assay in activated macrophages [ PDF] (46 kb)

PDF

Strains and vectors used [ PDF] (58 kb) Oligonucleotides used [ PDF] (35 kb) Competitive index experiment [ PDF] (49 kb) NirC is conserved in different bacterial species [ PDF] (25 kb) MTT assay [ PDF] (47 kb) Intracellular survival assay in activated macrophages [ PDF] (46 kb)

PDF

Strains and vectors used [ PDF] (58 kb) Oligonucleotides used [ PDF] (35 kb) Competitive index experiment [ PDF] (49 kb) NirC is conserved in different bacterial species [ PDF] (25 kb) MTT assay [ PDF] (47 kb) Intracellular survival assay in activated macrophages [ PDF] (46 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error