1887

Abstract

In , encodes an adhesin that is associated with different phenotypes, such as adherence to solid surfaces, hydrophobicity, mat and air–liquid biofilm formation. In the present study, we analysed allelic polymorphisms and -associated phenotypes of 20 flor strains. We identified 13 alleles of different lengths, varying from 3.0 to 6.1 kb, thus demonstrating that is highly polymorphic. Two alleles of 3.1 and 5.0 kb were cloned into strain BY4742 to compare the -associated phenotypes in the same genetic background. We show that there is a significant correlation between biofilm-forming ability and length both in different and in the same genetic backgrounds. Moreover, we propose a multiple regression model that allows prediction of air–liquid biofilm-forming ability on the basis of transcription levels and lengths of alleles in a population of flor strains. Considering that transcriptional differences are only partially explained by the differences in the promoter sequences, our results are consistent with the hypothesis that transcription levels are strongly influenced by genetic background and affect biofilm-forming ability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028738-0
2009-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3838.html?itemId=/content/journal/micro/10.1099/mic.0.028738-0&mimeType=html&fmt=ahah

References

  1. Barrales, R. R., Jimenez, J. & Ibeas, J. I. ( 2008; ). Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178, 145–156.[CrossRef]
    [Google Scholar]
  2. Beauvais, A., Loussert, C., Prevost, M. C., Verstrepen, K. & Latgé, J. P. ( 2009; ). Characterization of a biofilm-like extracellular matrix in FLO1-expressing Saccharomyces cerevisiae cells. FEMS Yeast Res 9, 411–419.[CrossRef]
    [Google Scholar]
  3. Bowen, S. & Wheals, A. E. ( 2006; ). Ser/Thr-rich domains are associated with genetic variation and morphogenesis in Saccharomyces cerevisiae. Yeast 23, 633–640.[CrossRef]
    [Google Scholar]
  4. Bowen, S., Roberts, C. & Wheals, A. E. ( 2005; ). Patterns of polymorphism and divergence in stress-related yeast proteins. Yeast 22, 659–668.[CrossRef]
    [Google Scholar]
  5. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P. & Boeke, J. D. ( 1998; ). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132.[CrossRef]
    [Google Scholar]
  6. Braus, G. H., Grundmann, O., Bruckner, S. & Mosch, H. U. ( 2003; ). Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Mol Biol Cell 14, 4272–4284.[CrossRef]
    [Google Scholar]
  7. Budroni, M., Zara, S., Zara, G., Pirino, G. & Mannazzu, I. ( 2005; ). Peculiarities of flor strains adapted to Sardinian sherry-like wine ageing conditions. FEMS Yeast Res 5, 951–958.[CrossRef]
    [Google Scholar]
  8. Burke, D. A., Dawson, D. & Stearns, T. ( 2000; ). Methods in Yeast Genetics: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  9. Douglas, L. M., Li, L., Yang, Y. & Dranginis, A. M. ( 2007; ). Expression and characterization of the flocculin Flo11/Muc1, a Saccharomyces cerevisiae mannoprotein with homotypic properties of adhesion. Eukaryot Cell 6, 2214–2221.[CrossRef]
    [Google Scholar]
  10. Farris, G. A., Zara, S., Pinna, G. & Budroni, M. ( 2002; ). Genetic aspect of flor yeasts Sardinian strains, a case of study. In Biodiversity and Biotechnology of Wine Yeasts, pp. 71–83. Edited by Maurizio Ciani. Kerala, India: Research Signpost.
  11. Fidalgo, M., Barrales, R. R., Ibeas, J. I. & Jimenez, J. ( 2006; ). Adaptive evolution by mutations in the FLO11 gene. Proc Natl Acad Sci U S A 103, 11228–11233.[CrossRef]
    [Google Scholar]
  12. Fidalgo, M., Barrales, R. R. & Jimenez, J. ( 2008; ). Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast 25, 879–889.[CrossRef]
    [Google Scholar]
  13. Frieman, M. B. & Cormack, B. P. ( 2004; ). Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150, 3105–3114.[CrossRef]
    [Google Scholar]
  14. Halme, A., Bumgarner, S., Styles, C. A. & Fink, G. R. ( 2004; ). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116, 405–415.[CrossRef]
    [Google Scholar]
  15. Ishigami, M., Nakagawa, Y., Hayakawa, M. & Iimura, Y. ( 2004; ). FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae. FEMS Microbiol Lett 237, 425–430.
    [Google Scholar]
  16. Kuchin, S., Vyas, V. K. & Carlson, M. ( 2002; ). Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22, 3994–4000.[CrossRef]
    [Google Scholar]
  17. Kuthan, M., Devaux, F., Janderová, B., Slaninová, I., Jacq, C. & Palkovà, Z. ( 2003; ). Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 47, 745–754.[CrossRef]
    [Google Scholar]
  18. Liu, H., Styles, C. A. & Fink, G. R. ( 1996; ). Saccharomyces cerevisiae S288C has a 20 mutation in FLO8, a gene required for filamentous growth. Genetics 144, 967–978.
    [Google Scholar]
  19. Lo, W. S. & Dranginis, A. M. ( 1998; ). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9, 161–171.[CrossRef]
    [Google Scholar]
  20. Mannazzu, I., Simonetti, E., Marinangeli, P., Guerra, E., Budroni, M., Thangavelu, M., Bowen, S., Wheals, A. & Clementi, F. ( 2002; ). SED1 gene length and sequence polymorphisms in feral strains of Saccharomyces cerevisiae. Appl Environ Microbiol 68, 5437–5444.[CrossRef]
    [Google Scholar]
  21. Marinangeli, P., Clementi, F., Ciani, M. & Mannazzu, I. ( 2004; ). SED1 polymorphism within the genus Saccharomyces. FEMS Yeast Res 5, 73–79.[CrossRef]
    [Google Scholar]
  22. Pan, X. & Heitman, J. ( 1999; ). Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19, 4874–4887.
    [Google Scholar]
  23. Pan, X. & Heitman, J. ( 2002; ). Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol 22, 3981–3993.[CrossRef]
    [Google Scholar]
  24. Pfaffl, M. W. ( 2001; ). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45 [CrossRef]
    [Google Scholar]
  25. R Development Core Team ( 2008; ). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. www.R-project.org.
  26. Reynolds, T. B. & Fink, G. R. ( 2001; ). Bakers yeast, a model for fungal biofilm formation. Science 291, 878–881.[CrossRef]
    [Google Scholar]
  27. Rice, P., Longden, I. & Bleasby, A. ( 2000; ). EMBOSS: the European molecular biology open software suite. Trends Genet 16, 276–277.[CrossRef]
    [Google Scholar]
  28. Rupp, S., Summer, S. E., Lo, H. J., Madhani, H. & Fink, G. R. ( 1999; ). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18, 1257–1269.[CrossRef]
    [Google Scholar]
  29. Sherman, F., Fink, G. & Hicks, J. ( 1986; ). Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Stephens, A. J., Inman-Bamber, J., Giffard, P. M. & Huygens, F. ( 2008; ). High-resolution melting analysis of the spa repeat region of Staphylococcus aureus. Clin Chem 54, 432–436.[CrossRef]
    [Google Scholar]
  31. Verstrepen, K. J. & Klis, F. M. ( 2006; ). Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60, 5–15.[CrossRef]
    [Google Scholar]
  32. Verstrepen, K. J., Jansen, A., Lewitter, F. & Fink, G. R. ( 2005; ). Intragenic tandem repeats generate functional variability. Nat Genet 37, 986–990.[CrossRef]
    [Google Scholar]
  33. Zara, S., Bakalinsky, A. T., Zara, G., Pirino, G., Demontis, M. A. & Budroni, M. ( 2005; ). FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae. Appl Environ Microbiol 71, 2934–2939.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028738-0
Loading
/content/journal/micro/10.1099/mic.0.028738-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error