1887

Abstract

The aquatic zoonotic pathogen represents a threat to the worldwide aquaculture industry and poses a risk to humans who handle raw fish. Because little is known about the mechanisms of pathogenesis or virulence factors, we established a high-throughput system combining whole-genome pyrosequencing and transposon mutagenesis that allowed us to identify virulence proteins, including Pdi, the polysaccharide deacetylase of , that we describe here. Using bioinformatics tools, we identified a highly conserved signature motif in Pdi that is also conserved in the peptidoglycan deacetylase PgdA protein family. A Δ mutant was attenuated for virulence in the hybrid striped bass model and for survival in whole fish blood. Moreover, Pdi was found to promote bacterial resistance to lysozyme killing and the ability to adhere to and invade epithelial cells. On the other hand, there was no difference in the autolytic potential, resistance to oxidative killing or resistance to cationic antimicrobial peptides between wild-type and Δ. In conclusion, we have demonstrated that is involved in adherence and invasion, lysozyme resistance and survival in fish blood, and have shown that plays a role in the pathogenesis of . Identification of Pdi and other virulence proteins is a necessary initial step towards the development of appropriate preventive and therapeutic measures against diseases and economic losses caused by this pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028365-0
2010-02-01
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/543.html?itemId=/content/journal/micro/10.1099/mic.0.028365-0&mimeType=html&fmt=ahah

References

  1. Agnew W., Barnes A. C.. 2007; Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet Microbiol122:1–15
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Apweiler R., Attwood T. K., Bairoch A., Bateman A., Birney E., Biswas M., Bucher P., Cerutti L., Corpet F.. other authors 2001; The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res29:37–40
    [Google Scholar]
  4. Arancibia S. A., Beltran C. J., Aguirre I. M., Silva P., Peralta A. L., Malinarich F., Hermoso M. A.. 2007; Toll-like receptors are key participants in innate immune responses. Biol Res40:97–112
    [Google Scholar]
  5. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M.. other authors 2008; The RAST server: rapid annotations using subsystems technology. BMC Genomics9:75
    [Google Scholar]
  6. Baiano J. C., Tumbol R. A., Umapathy A., Barnes A. C.. 2008; Identification and molecular characterisation of a fibrinogen binding protein from Streptococcus iniae. BMC Microbiol8:67
    [Google Scholar]
  7. Barnes A. C., Young F. M., Horne M. T., Ellis A. E.. 2003; Streptococcus iniae: serological differences, presence of capsule and resistance to immune serum killing. Dis Aquat Organ53:241–247
    [Google Scholar]
  8. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795
    [Google Scholar]
  9. Blair D. E., Schuttelkopf A. W., MacRae J. I., van Aalten D. M.. 2005; Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc Natl Acad Sci U S A102:15429–15434
    [Google Scholar]
  10. Boneca I. G., Dussurget O., Cabanes D., Nahori M. A., Sousa S., Lecuit M., Psylinakis E., Bouriotis V., Hugot J. P.. other authors 2007; A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci U S A104:997–1002
    [Google Scholar]
  11. Buchanan J. T., Stannard J. A., Lauth X., Ostland V. E., Powell H. C., Westerman M. E., Nizet V.. 2005; Streptococcus iniae phosphoglucomutase is a virulence factor and a target for vaccine development. Infect Immun73:6935–6944
    [Google Scholar]
  12. Buchanan J. T., Simpson A. J., Aziz R. K., Liu G. Y., Kristian S. A., Kotb M., Feramisco J., Nizet V.. 2006; DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol16:396–400
    [Google Scholar]
  13. Datta V., Myskowski S. M., Kwinn L. A., Chiem D. N., Varki N., Kansal R. G., Kotb M., Nizet V.. 2005; Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol56:681–695
    [Google Scholar]
  14. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V.. other authors 2008; Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res36:W465–W469
    [Google Scholar]
  15. Eyngor M., Chilmonczyk S., Zlotkin A., Manuali E., Lahav D., Ghittino C., Shapira R., Hurvitz A., Eldar A.. 2007; Transcytosis of Streptococcus iniae through skin epithelial barriers: an in vitro study. FEMS Microbiol Lett277:238–248
    [Google Scholar]
  16. Facklam R., Elliott J., Shewmaker L., Reingold A.. 2005; Identification and characterization of sporadic isolates of Streptococcus iniae isolated from humans. J Clin Microbiol43:933–937
    [Google Scholar]
  17. Felsenstein J.. 1997; An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol46:101–111
    [Google Scholar]
  18. Finn R. D., Tate J., Mistry J., Coggill P. C., Sammut S. J., Hotz H. R., Ceric G., Forslund K., Eddy S. R.. other authors 2008; The Pfam protein families database. Nucleic Acids Res36:D281–D288
    [Google Scholar]
  19. Fuller J. D., Camus A. C., Duncan C. L., Nizet V., Bast D. J., Thune R. L., Low D. E., De Azavedo J. C.. 2002; Identification of a streptolysin S-associated gene cluster and its role in the pathogenesis of Streptococcus iniae disease. Infect Immun70:5730–5739
    [Google Scholar]
  20. Gallo R. L., Nizet V.. 2003; Endogenous production of antimicrobial peptides in innate immunity and human disease. Curr Allergy Asthma Rep3:402–409
    [Google Scholar]
  21. Gordon D., Abajian C., Green P.. 1998; Consed: a graphical tool for sequence finishing. Genome Res8:195–202
    [Google Scholar]
  22. Higgins D. G., Thompson J. D., Gibson T. J.. 1996; Using clustal for multiple sequence alignments. Methods Enzymol266:383–402
    [Google Scholar]
  23. Hooper S. D., Berg O. G.. 2003; On the nature of gene innovation: duplication patterns in microbial genomes. Mol Biol Evol20:945–954
    [Google Scholar]
  24. Karlyshev A. V., Pallen M. J., Wren B. W.. 2000; Single-primer PCR procedure for rapid identification of transposon insertion sites. Biotechniques28:1078–1080 1082
    [Google Scholar]
  25. Kristian S. A., Datta V., Weidenmaier C., Kansal R., Fedtke I., Peschel A., Gallo R. L., Nizet V.. 2005; d-Alanylation of teichoic acids promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol187:6719–6725
    [Google Scholar]
  26. Lau S. K., Woo P. C., Tse H., Leung K. W., Wong S. S., Yuen K. Y.. 2003; Invasive Streptococcus iniae infections outside North America. J Clin Microbiol41:1004–1009
    [Google Scholar]
  27. Lau S. K., Woo P. C., Luk W. K., Fung A. M., Hui W. T., Fong A. H., Chow C. W., Wong S. S., Yuen K. Y.. 2006; Clinical isolates of Streptococcus iniae from Asia are more mucoid and β-hemolytic than those from North America. Diagn Microbiol Infect Dis54:177–181
    [Google Scholar]
  28. Lauth X., Shike H., Burns J. C., Westerman M. E., Ostland V. E., Carlberg J. M., Van Olst J. C., Nizet V., Taylor S. W.. other authors 2002; Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J Biol Chem277:5030–5039
    [Google Scholar]
  29. Liu G. Y., Doran K. S., Lawrence T., Turkson N., Puliti M., Tissi L., Nizet V.. 2004; Sword and shield: linked group B streptococcal β-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense. Proc Natl Acad Sci U S A101:14491–14496
    [Google Scholar]
  30. Locke J. B., Colvin K. M., Datta A. K., Patel S. K., Naidu N. N., Neely M. N., Nizet V., Buchanan J. T.. 2007a; Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish. J Bacteriol189:1279–1287
    [Google Scholar]
  31. Locke J. B., Colvin K. M., Varki N., Vicknair M. R., Nizet V., Buchanan J. T.. 2007b; Streptococcus iniae β-hemolysin streptolysin S is a virulence factor in fish infection. Dis Aquat Organ76:17–26
    [Google Scholar]
  32. Locke J. B., Aziz R. K., Vicknair M. R., Nizet V., Buchanan J. T.. 2008; Streptococcus iniae M-like protein contributes to virulence in fish and is a target for live attenuated vaccine development. PLoS One3:e2824
    [Google Scholar]
  33. Lowe B. A., Miller J. D., Neely M. N.. 2007; Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect Immun75:1255–1264
    [Google Scholar]
  34. McNeil L. K., Reich C., Aziz R. K., Bartels D., Cohoon M., Disz T., Edwards R. A., Gerdes S., Hwang K.. other authors 2007; The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation. Nucleic Acids Res35:D347–D353
    [Google Scholar]
  35. Meyrand M., Boughammoura A., Courtin P., Mezange C., Guillot A., Chapot-Chartier M. P.. 2007; Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis. Microbiology153:3275–3285
    [Google Scholar]
  36. Miller J. D., Neely M. N.. 2005; Large-scale screen highlights the importance of capsule for virulence in the zoonotic pathogen Streptococcus iniae. Infect Immun73:921–934
    [Google Scholar]
  37. Nakano Y., Yoshida Y., Yamashita Y., Koga T.. 1995; Construction of a series of pACYC-derived plasmid vectors. Gene162:157–158
    [Google Scholar]
  38. Nigro G., Fazio L. L., Martino M. C., Rossi G., Tattoli I., Liparoti V., De Castro C., Molinaro A., Philpott D. J., Bernardini M. L.. 2008; Muramylpeptide shedding modulates cell sensing of Shigella flexneri. Cell Microbiol10:682–695
    [Google Scholar]
  39. Overbeek R., Begley T., Butler R. M., Choudhuri J. V., Chuang H. Y., Cohoon M., de Crécy-Lagard V., Diaz N., Disz T.. other authors 2005; The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res33:5691–5702
    [Google Scholar]
  40. Psylinakis E., Boneca I. G., Mavromatis K., Deli A., Hayhurst E., Foster S. J., Varum K. M., Bouriotis V.. 2005; Peptidoglycan N-acetylglucosamine deacetylases from Bacillus cereus, highly conserved proteins in Bacillus anthracis. J Biol Chem280:30856–30863
    [Google Scholar]
  41. Rajam G., Phillips D. J., White E., Anderton J., Hooper C. W., Sampson J. S., Carlone G. M., Ades E. W., Romero-Steiner S.. 2008; A functional epitope of the pneumococcal surface adhesin A activates nasopharyngeal cells and increases bacterial internalization. Microb Pathog44:186–196
    [Google Scholar]
  42. Shimizu C., Shike H., Malicki D. M., Breisch E., Westerman M., Buchanan J., Ligman H. R., Phillips R. B., Carlberg J. M.. other authors 2003; Characterization of a white bass ( Morone chrysops) embryonic cell line with epithelial features. In Vitro Cell Dev Biol Anim3929–35
    [Google Scholar]
  43. Soehnlein O., Kenne E., Rotzius P., Eriksson E. E., Lindbom L.. 2008; Neutrophil secretion products regulate anti-bacterial activity in monocytes and macrophages. Clin Exp Immunol151:139–145
    [Google Scholar]
  44. Subramaniam S.. 1998; The Biology Workbench – a seamless database and analysis environment for the biologist. Proteins32:1–2
    [Google Scholar]
  45. Sun J. R., Yan J. C., Yeh C. Y., Lee S. Y., Lu J. J.. 2007; Invasive infection with Streptococcus iniae in Taiwan. J Med Microbiol56:1246–1249
    [Google Scholar]
  46. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  47. Vollmer W., Tomasz A.. 2000; The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J Biol Chem275:20496–20501
    [Google Scholar]
  48. Vollmer W., Tomasz A.. 2002; Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect Immun70:7176–7178
    [Google Scholar]
  49. Vuong C., Kocianova S., Voyich J. M., Yao Y., Fischer E. R., DeLeo F. R., Otto M.. 2004; A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem279:54881–54886
    [Google Scholar]
  50. Weinstein M. R., Litt M., Kertesz D. A., Wyper P., Rose D., Coulter M., McGeer A., Facklam R., Ostach C.. other authors 1997; Invasive infections due to a fish pathogen, Streptococcus iniae. N Engl J Med337:589–594
    [Google Scholar]
  51. Williamson Y. M., Gowrisankar R., Longo D. L., Facklam R., Gipson I. K., Ades E. P., Carlone G. M., Sampson J. S.. 2008; Adherence of nontypeable Streptococcus pneumoniae to human conjunctival epithelial cells. Microb Pathog44:175–185
    [Google Scholar]
  52. Zlotkin A., Chilmonczyk S., Eyngor M., Hurvitz A., Ghittino C., Eldar A.. 2003; Trojan horse effect: phagocyte-mediated Streptococcus iniae infection of fish. Infect Immun71:2318–2325
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028365-0
Loading
/content/journal/micro/10.1099/mic.0.028365-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error