1887

Abstract

During the course of its infection of the mammalian digestive tract, the entero-invasive, Gram-negative bacterium must overcome various hostile living conditions (notably, iron starvation and the presence of antimicrobial compounds produced ). We have previously reported that bacterial growth during iron deprivation raises resistance to the antimicrobial peptide polymyxin B; here, we show that this phenotype is mediated by a chromosomal gene () encoding a transcriptional regulator from the LysR family. We determined that the product of is a pleiotropic regulator which controls (in addition to its own expression) genes encoding the Yfe iron-uptake system and polymyxin B resistance. Lastly, by using a mouse model of oral infection, we demonstrated that YPTB0333 is required for colonization of Peyer's patches and mesenteric lymph nodes by .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026690-0
2009-07-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2168.html?itemId=/content/journal/micro/10.1099/mic.0.026690-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C., Robinson A. K., Rodriguez-Quinones F.. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev27:215–237
    [Google Scholar]
  2. Ayabe T., Satchell D. P., Wilson C. L., Parks W. C., Selsted M. E., Ouellette A. J.. 2000; Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol1:113–118
    [Google Scholar]
  3. Bagg A., Neilands J. B.. 1987; Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry26:5471–5477
    [Google Scholar]
  4. Bearden S. W., Staggs T. M., Perry R. D.. 1998; An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. J Bacteriol180:1135–1147
    [Google Scholar]
  5. Bengoechea J. A., Lindner B., Seydel U., Diaz R., Moriyon I.. 1998; Yersinia pseudotuberculosis and Yersinia pestis are more resistant to bactericidal cationic peptides than Yersinia enterocolitica. Microbiology144:1509–1515
    [Google Scholar]
  6. Bevins C. L.. 2004; The Paneth cell and the innate immune response. Curr Opin Gastroenterol20:572–580
    [Google Scholar]
  7. Bottone E. J.. 1997; Yersinia enterocolitica: the charisma continues. Clin Microbiol Rev10:257–276
    [Google Scholar]
  8. Calderwood S. B., Mekalanos J. J.. 1987; Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol169:4759–4764
    [Google Scholar]
  9. Carnoy C., Mullet C., Muller-Alouf H., Leteurtre E., Simonet M.. 2000; Superantigen YPMa exacerbates the virulence of Yersinia pseudotuberculosis in mice. Infect Immun68:2553–2559
    [Google Scholar]
  10. Chain P. S., Carniel E., Larimer F. W., Lamerdin J., Stoutland P. O., Regala W. M., Georgescu A. M., Vergez L. M., Land M. L.. other authors 2004; Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A101:13826–13831
    [Google Scholar]
  11. Conchas R. F., Carniel E.. 1990; A highly efficient electroporation system for transformation of Yersinia. Gene87:133–137
    [Google Scholar]
  12. Donnenberg M. S., Kaper J. B.. 1991; Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun59:4310–4317
    [Google Scholar]
  13. Eisenhauer P. B., Lehrer R. I.. 1992; Mouse neutrophils lack defensins. Infect Immun60:3446–3447
    [Google Scholar]
  14. Flamez C., Ricard I., Arafah S., Simonet M., Marceau M.. 2008; Phenotypic analysis of Yersinia pseudotuberculosis 32777 response regulator mutants: new insights into two-component system regulon plasticity in bacteria. Int J Med Microbiol298:193–207
    [Google Scholar]
  15. Foultier B., Troisfontaines P., Muller S., Opperdoes F. R., Cornelis G. R.. 2002; Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J Mol Evol55:37–51
    [Google Scholar]
  16. Friedrich C., Scott M. G., Karunaratne N., Yan H., Hancock R. E.. 1999; Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother43:1542–1548
    [Google Scholar]
  17. Friedrich C. L., Moyles D., Beveridge T. J., Hancock R. E.. 2000; Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria. Antimicrob Agents Chemother44:2086–2092
    [Google Scholar]
  18. Garcia Vescovi E., Soncini F. C., Groisman E. A.. 1996; Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell84:165–174
    [Google Scholar]
  19. Groisman E. A., Kayser J., Soncini F. C.. 1997; Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol179:7040–7045
    [Google Scholar]
  20. Gudmundsson G. H., Agerberth B., Odeberg J., Bergman T., Olsson B., Salcedo R.. 1996; The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem238:325–332
    [Google Scholar]
  21. Gunn J. S., Lim K. B., Krueger J., Kim K., Guo L., Hackett M., Miller S. I.. 1998; PmrA–PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol27:1171–1182
    [Google Scholar]
  22. Gunn J. S., Ryan S. S., Van Velkinburgh J. C., Ernst R. K., Miller S. I.. 2000; Genetic and functional analysis of a PmrA–PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect Immun68:6139–6146
    [Google Scholar]
  23. Hancock R. E., Diamond G.. 2000; The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol8:402–410
    [Google Scholar]
  24. Hentze M. W., Muckenthaler M. U., Andrews N. C.. 2004; Balancing acts: molecular control of mammalian iron metabolism. Cell117:285–297
    [Google Scholar]
  25. Heroven A. K., Dersch P.. 2006; RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol62:1469–1483
    [Google Scholar]
  26. Heroven A. K., Bohme K., Tran-Winkler H., Dersch P.. 2007; Regulatory elements implicated in the environmental control of invasin expression in enteropathogenic Yersinia. Adv Exp Med Biol603:156–166
    [Google Scholar]
  27. Jin T., Bokarewa M., Foster T., Mitchell J., Higgins J., Tarkowski A.. 2004; Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol172:1169–1176
    [Google Scholar]
  28. Leong D., Murphy J. R.. 1985; Characterization of the diphtheria tox transcript in Corynebacterium diphtheriae and Escherichia coli. J Bacteriol163:1114–1119
    [Google Scholar]
  29. Lory S.. 1986; Effect of iron on accumulation of exotoxin A-specific mRNA in Pseudomonas aeruginosa. J Bacteriol168:1451–1456
    [Google Scholar]
  30. Maddocks S. E., Oyston P. C.. 2008; Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology154:3609–3623
    [Google Scholar]
  31. Marceau M., Sebbane F., Ewann F., Collyn F., Lindner B., Campos M. A., Bengoechea J. A., Simonet M.. 2004; The pmrF polymyxin-resistance operon of Yersinia pseudotuberculosis is upregulated by the PhoP–PhoQ two-component system but not by PmrA–PmrB, and is not required for virulence. Microbiology150:3947–3957
    [Google Scholar]
  32. Miller V. L., Mekalanos J. J.. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol170:2575–2583
    [Google Scholar]
  33. Miyata T., Tokunaga F., Yoneya T., Yoshikawa K., Iwanaga S., Niwa M., Takao T., Shimonishi Y.. 1989; Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J Biochem106:663–668
    [Google Scholar]
  34. Moore R. A., Bates N. C., Hancock R. E.. 1986; Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob Agents Chemother29:496–500
    [Google Scholar]
  35. Nizet V.. 2006; Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol8:11–26
    [Google Scholar]
  36. Pao S. S., Paulsen I. T., Saier M. H. Jr. 1998; Major facilitator superfamily. Microbiol Mol Biol Rev62:1–34
    [Google Scholar]
  37. Ratledge C., Dover L. G.. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol54:881–941
    [Google Scholar]
  38. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schell M. A.. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol47:597–626
    [Google Scholar]
  40. Schindler M., Osborn M. J.. 1979; Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry18:4425–4430
    [Google Scholar]
  41. Sebbane F., Devalckenaere A., Foulon J., Carniel E., Simonet M.. 2001; Silencing and reactivation of urease in Yersinia pestis is determined by one G residue at a specific position in the ureD gene. Infect Immun69:170–176
    [Google Scholar]
  42. Selsted M. E., Novotny M. J., Morris W. L., Tang Y. Q., Smith W., Cullor J. S.. 1992; Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem267:4292–4295
    [Google Scholar]
  43. Shafer W. M., Qu X., Waring A. J., Lehrer R. I.. 1998; Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A95:1829–1833
    [Google Scholar]
  44. Shai Y.. 2002; Mode of action of membrane active antimicrobial peptides. Biopolymers66:236–248
    [Google Scholar]
  45. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology (N Y)1:784–791
    [Google Scholar]
  46. Stumpe S., Schmid R., Stephens D. L., Georgiou G., Bakker E. P.. 1998; Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol180:4002–4006
    [Google Scholar]
  47. Thomson N. R., Howard S., Wren B. W., Holden M. T., Crossman L., Challis G. L., Churcher C., Mungall K., Brooks K.. other authors 2006; The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet2:e206
    [Google Scholar]
  48. Vaara M., Viljanen P.. 1985; Binding of polymyxin B nonapeptide to Gram-negative bacteria. Antimicrob Agents Chemother27:548–554
    [Google Scholar]
  49. Vartivarian S. E., Cowart R. E.. 1999; Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms. Arch Biochem Biophys364:75–82
    [Google Scholar]
  50. Wösten M. M., Kox L. F., Chamnongpol S., Soncini F. C., Groisman E. A.. 2000; A signal transduction system that responds to extracellular iron. Cell103:113–125
    [Google Scholar]
  51. Yan A., Guan Z., Raetz C. R.. 2007; An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J Biol Chem282:36077–36089
    [Google Scholar]
  52. Yeaman M. R., Yount N. Y.. 2003; Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev55:27–55
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026690-0
Loading
/content/journal/micro/10.1099/mic.0.026690-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error