1887

Abstract

produces a variety of virulence factors that allow it to cause a wide range of infections in humans and animals. In the latter, is a leading cause of intramammary infections. The contribution of catalase (KatA), an enzyme implicated in oxidative stress resistance, and beta-toxin (Hlb), a haemolysin, to the pathogenesis of is poorly characterized. To investigate the role of these enzymes as potential virulence factors in , we examined the intracellular survival of Δ, Δ and Δ Δ mutants in murine macrophages (J774A.1) and bovine mammary epithelial cells (MAC-T), and their virulence in different murine and ovine models. Catalase was not required for the survival of within either J774A.1 or MAC-T cells. However, it was necessary for the intracellular proliferation of the bacterium after invasion of MAC-T cells. In addition, catalase was not needed for the full virulence of in mice. Deletion of the gene had no effect on the intracellular survival of in J774A.1 cells but did cause a slight increase in survival in MAC-T cells. Furthermore, like catalase, beta-toxin was not required for complete virulence of in murine models. Unexpectedly, the Δ Δ mutant showed a notably increased persistence in both cell lines, and was significantly less virulent for mice than were the wild-type strain and single mutants. Most interestingly, it was also markedly attenuated in intramammary and subcutaneous infections in ewes and lambs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025544-0
2009-05-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1505.html?itemId=/content/journal/micro/10.1099/mic.0.025544-0&mimeType=html&fmt=ahah

References

  1. Aarestrup, F. M., Larsen, H. D., Eriksen, N. H., Elsberg, C. S. & Jensen, N. E. ( 1999; ). Frequency of alpha- and beta-haemolysin in Staphylococcus aureus of bovine and human origin. A comparison between pheno- and genotype and variation in phenotypic expression. APMIS 107, 425–430.[CrossRef]
    [Google Scholar]
  2. Alexander, E. H. & Hudson, M. C. ( 2001; ). Factors influencing the internalization of Staphylococcus aureus and impacts on the course of infections in humans. Appl Microbiol Biotechnol 56, 361–366.[CrossRef]
    [Google Scholar]
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1992; ). Current Protocols in Molecular Biology. New York: Green Publishing Associates and Wiley-Interscience.
  4. Basu, M., Czinn, S. J. & Blanchard, T. G. ( 2004; ). Absence of catalase reduces long-term survival of Helicobacter pylori in macrophage phagosomes. Helicobacter 9, 211–216.[CrossRef]
    [Google Scholar]
  5. Bayles, K. W., Wesson, C. A., Liou, L. E., Fox, L. K., Bohach, G. A. & Trumble, W. R. ( 1998; ). Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66, 336–342.
    [Google Scholar]
  6. Benton, B. M., Zhang, J. P., Bond, S., Pope, C., Christian, T., Lee, L., Winterberg, K. M., Schmid, M. B. & Buysse, J. M. ( 2004; ). Large-scale identification of genes required for full virulence of Staphylococcus aureus. J Bacteriol 186, 8478–8489.[CrossRef]
    [Google Scholar]
  7. Bramley, A. J., Patel, A. H., O'Reilly, M., Foster, R. & Foster, T. J. ( 1989; ). Roles of alpha-toxin and beta-toxin in virulence of Staphylococcus aureus for the mouse mammary gland. Infect Immun 57, 2489–2494.
    [Google Scholar]
  8. Brouillette, E., Grondin, G., Shkreta, L., Lacasse, P. & Talbot, B. G. ( 2003; ). In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins. Microb Pathog 35, 159–168.[CrossRef]
    [Google Scholar]
  9. Cabiscol, E., Tamarit, J. & Ros, J. ( 2000; ). Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3, 3–8.
    [Google Scholar]
  10. Calvinho, L. F., Donnelly, W. J. & Dodd, K. ( 1993; ). Effect of partially purified Staphylococcus aureus beta-haemolysin on the mammary gland of the mouse. Zentralbl Veterinarmed B 40, 559–568.[CrossRef]
    [Google Scholar]
  11. Cifrian, E., Guidry, A. J., Bramley, A. J., Norcross, N. L., Bastida-Corcuera, F. D. & Marquardt, W. W. ( 1996; ). Effect of staphylococcal β toxin on the cytotoxicity, proliferation and adherence of Staphylococcus aureus to bovine mammary epithelial cells. Vet Microbiol 48, 187–198.[CrossRef]
    [Google Scholar]
  12. Cosgrove, K., Coutts, G., Jonsson, I. M., Tarkowski, A., Kokai-Kun, J. F., Mond, J. J. & Foster, S. J. ( 2007; ). Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol 189, 1025–1035.[CrossRef]
    [Google Scholar]
  13. Cucarella, C., Tormo, M. A., Knecht, E., Amorena, B., Lasa, I., Foster, T. J. & Penadés, J. R. ( 2002; ). Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 70, 3180–3186.[CrossRef]
    [Google Scholar]
  14. Day, W. A., Jr, Sajecki, J. L., Pitts, T. M. & Joens, L. A. ( 2000; ). Role of catalase in Campylobacter jejuni intracellular survival. Infect Immun 68, 6337–6345.[CrossRef]
    [Google Scholar]
  15. Dinges, M. M., Orwin, P. M. & Schlievert, P. M. ( 2000; ). Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13, 16–34.[CrossRef]
    [Google Scholar]
  16. González-Zorn, B., Domínguez-Bernal, G., Suárez, M., Ripio, M. T., Vega, Y., Novella, S. & Vázquez-Boland, J. A. ( 1999; ). The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol Microbiol 33, 510–523.[CrossRef]
    [Google Scholar]
  17. Götz, F., Ahrne, S. & Lindberg, M. ( 1981; ). Plasmid transfer and genetic recombination by protoplast fusion in staphylococci. J Bacteriol 145, 74–81.
    [Google Scholar]
  18. Haima, P., van Sinderen, D., Schotting, H., Bron, S. & Venema, G. ( 1990; ). Development of a β-galactosidase α-complementation system for molecular cloning in Bacillus subtilis. Gene 86, 63–69.[CrossRef]
    [Google Scholar]
  19. Hannun, Y. A. & Obeid, L. M. ( 1995; ). Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 20, 73–77.[CrossRef]
    [Google Scholar]
  20. Hébert, A., Sayasith, K., Sénéchal, S., Dubreuil, P. & Lagacé, J. ( 2000; ). Demonstration of intracellular Staphylococcus aureus in bovine mastitis alveolar cells and macrophages isolated from naturally infected cow milk. FEMS Microbiol Lett 193, 57–62.[CrossRef]
    [Google Scholar]
  21. Horinouchi, S. & Weisblum, B. ( 1982; ). Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol 150, 804–814.
    [Google Scholar]
  22. Horsburgh, M. J., Clements, M. O., Crossley, H., Ingham, E. & Foster, S. J. ( 2001; ). PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69, 3744–3754.[CrossRef]
    [Google Scholar]
  23. Huynh, H. T., Robitaille, G. & Turner, J. D. ( 1991; ). Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. Exp Cell Res 197, 191–199.[CrossRef]
    [Google Scholar]
  24. Kanafani, H. & Martin, S. E. ( 1985; ). Catalase and superoxide dismutase activities in virulent and nonvirulent Staphylococcus aureus isolates. J Clin Microbiol 21, 607–610.
    [Google Scholar]
  25. Kerro Dego, O., van Dijk, J. E. & Nederbragt, H. ( 2002; ). Factors involved in the early pathogenesis of bovine Staphylococcus aureus mastitis with emphasis on bacterial adhesion and invasion. A review. Vet Q 24, 181–198.[CrossRef]
    [Google Scholar]
  26. Larsen, H. D., Aarestrup, F. M. & Jensen, N. E. ( 2002; ). Geographical variation in the presence of genes encoding superantigenic exotoxins and β-hemolysin among Staphylococcus aureus isolated from bovine mastitis in Europe and USA. Vet Microbiol 85, 61–67.[CrossRef]
    [Google Scholar]
  27. Manca, C., Paul, S., Barry, C. E., III, Freedman, V. H. & Kaplan, G. ( 1999; ). Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 67, 74–79.
    [Google Scholar]
  28. Mandell, G. L. ( 1975; ). Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal–leukocyte interaction. J Clin Invest 55, 561–566.[CrossRef]
    [Google Scholar]
  29. Meier, B. ( 2001; ). Superoxide generation of phagocytes and nonphagocytic cells. Protoplasma 217, 117–124.[CrossRef]
    [Google Scholar]
  30. Menzies, B. E. & Kourteva, I. ( 1998; ). Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect Immun 66, 5994–5998.
    [Google Scholar]
  31. Nilsson, I. M., Hartford, O., Foster, T. & Tarkowski, A. ( 1999; ). Alpha-toxin and gamma-toxin jointly promote Staphylococcus aureus virulence in murine septic arthritis. Infect Immun 67, 1045–1049.
    [Google Scholar]
  32. O'Callaghan, R. J., Callegan, M. C., Moreau, J. M., Green, L. C., Foster, T. J., Hartford, O. M., Engel, L. S. & Hill, J. M. ( 1997; ). Specific roles of alpha-toxin and beta-toxin during Staphylococcus aureus corneal infection. Infect Immun 65, 1571–1578.
    [Google Scholar]
  33. Qazi, S. N., Counil, E., Morrissey, J., Rees, C. E., Cockayne, A., Winzer, K., Chan, W. C., Williams, P. & Hill, P. J. ( 2001; ). agr expression precedes escape of internalized Staphylococcus aureus from the host endosome. Infect Immun 69, 7074–7082.[CrossRef]
    [Google Scholar]
  34. Ramos-Morales, F., Prieto, A. I., Beuzón, C. R., Holden, D. W. & Casadesús, J. ( 2003; ). Role for Salmonella enterica enterobacterial common antigen in bile resistance and virulence. J Bacteriol 185, 5328–5332.[CrossRef]
    [Google Scholar]
  35. Reed, L. & Muench, H. ( 1938; ). A simple method of estimating fifty per cent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  36. Ripio, M. T., Geoffroy, C., Domínguez, G., Alouf, J. E. & Vázquez-Boland, J. A. ( 1995; ). The sulphydryl-activated cytolysin and a sphingomyelinase C are the major membrane-damaging factors involved in cooperative (CAMP-like) haemolysis of Listeria spp. Res Microbiol 146, 303–313.[CrossRef]
    [Google Scholar]
  37. Sanz, R., Marín, I., Ruíz-Santa-Quiteria, J. A., Orden, J. A., Cid, D., Díez, R. M., Silhadi, K. S., Amils, R. & de la Fuente, R. ( 2000; ). Catalase deficiency in Staphylococcus aureus subsp. anaerobius is associated with natural loss-of-function mutations within the structural gene. Microbiology 146, 465–475.
    [Google Scholar]
  38. Seral, C., Van Bambeke, F. & Tulkens, P. M. ( 2003; ). Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob Agents Chemother 47, 2283–2292.[CrossRef]
    [Google Scholar]
  39. Shompole, S., Henon, K. T., Liou, L. E., Dziewanowska, K., Bohach, G. A. & Bayles, K. W. ( 2003; ). Biphasic intracellular expression of Staphylococcus aureus virulence factors and evidence for Agr-mediated diffusion sensing. Mol Microbiol 49, 919–927.[CrossRef]
    [Google Scholar]
  40. Sutra, L. & Poutrel, B. ( 1994; ). Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J Med Microbiol 40, 79–89.[CrossRef]
    [Google Scholar]
  41. Titball, R. W. ( 1993; ). Bacterial phospholipases C. Microbiol Rev 57, 347–366.
    [Google Scholar]
  42. Vallejo, A. N., Pogulis, R. J. & Pease, L. R. ( 1994; ). In vitro synthesis of novel genes: mutagenesis and recombination by PCR. PCR Methods Appl 4, S123–S130.[CrossRef]
    [Google Scholar]
  43. Vann, J. M. & Proctor, R. A. ( 1988; ). Cytotoxic effects of ingested Staphylococcus aureus on bovine endothelial cells: role of S. aureus α-hemolysin. Microb Pathog 4, 443–453.[CrossRef]
    [Google Scholar]
  44. von Eiff, C., Heilmann, C., Proctor, R. A., Woltz, C., Peters, G. & Gotz, F. ( 1997; ). A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J Bacteriol 179, 4706–4712.
    [Google Scholar]
  45. Ward, P. D., Adlam, C., McCartney, A. C., Arbuthnott, J. P. & Thorley, C. M. ( 1979; ). A histopathological study of the effects of highly purified staphlococcal alpha and beta toxins on the lactating mammary gland and skin of the rabbit. J Comp Pathol 89, 169–177.[CrossRef]
    [Google Scholar]
  46. Wesson, C. A., Liou, L. E., Todd, K. M., Bohach, G. A., Trumble, W. R. & Bayles, K. W. ( 1998; ). Staphylococcus aureus Agr and Sar global regulators influence internalization and induction of apoptosis. Infect Immun 66, 5238–5243.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025544-0
Loading
/content/journal/micro/10.1099/mic.0.025544-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error