1887

Abstract

is a highly virulent, intracellular pathogen that causes the disease tularaemia. A research surrogate for is , which causes a tularaemia-like disease in mice, grows similarly in macrophages, and yet is unable to cause disease in humans. Both species contain a cluster of genes referred to as the pathogenicity island (FPI). Pathogenicity determinant protein A (PdpA), encoded by the gene, is located within the FPI and has been associated with the virulence of species. In this work we examined the properties of PdpA protein expression and localization as well as the phenotype of a deletion mutant. Monoclonal antibody detection of PdpA showed that it is a soluble protein that is upregulated in iron-limiting conditions and undetectable in an or mutant background. Deletion of resulted in a strain that was highly attenuated for virulence in chicken embryos and mice.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025379-0
2009-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1489.html?itemId=/content/journal/micro/10.1099/mic.0.025379-0&mimeType=html&fmt=ahah

References

  1. Angot, A., Peeters, N., Lechner, E., Vailleau, F., Baud, C., Gentzbittel, L., Sartorel, E., Genschik, P., Boucher, C. & Genin, S. ( 2006; ). Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc Natl Acad Sci U S A 103, 14620–14625.[CrossRef]
    [Google Scholar]
  2. Angot, A., Vergunst, A., Genin, S. & Peeters, N. ( 2007; ). Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog 3, e3 [CrossRef]
    [Google Scholar]
  3. Anthony, L. D., Burke, R. D. & Nano, F. E. ( 1991; ). Growth of Francisella spp. in rodent macrophages. Infect Immun 59, 3291–3296.
    [Google Scholar]
  4. Baron, G. S. & Nano, F. E. ( 1998; ). MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol 29, 247–259.[CrossRef]
    [Google Scholar]
  5. Brotcke, A. & Monack, D. M. ( 2008; ). Identification of fevR, a novel regulator of virulence gene expression in Francisella. Infect Immun 76, 3473–3480.[CrossRef]
    [Google Scholar]
  6. Brotcke, A., Weiss, D. S., Kim, C. C., Chain, P., Malfatti, S., Garcia, E. & Monack, D. M. ( 2006; ). Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun 74, 6642–6655.[CrossRef]
    [Google Scholar]
  7. Charity, J. C., Costante-Hamm, M. M., Balon, E. L., Boyd, D. H., Rubin, E. J. & Dove, S. L. ( 2007; ). Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog 3, e84 [CrossRef]
    [Google Scholar]
  8. Clemens, D. L., Lee, B. Y. & Horwitz, M. A. ( 2004; ). Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun 72, 3204–3217.[CrossRef]
    [Google Scholar]
  9. Cowley, S. C., Gray, C. J. & Nano, F. E. ( 2000; ). Isolation and characterization of Francisella novicida mutants defective in lipopolysaccharide biosynthesis. FEMS Microbiol Lett 182, 63–67.[CrossRef]
    [Google Scholar]
  10. de Bruin, O. M., Ludu, J. S. & Nano, F. E. ( 2007; ). The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 7, 1 [CrossRef]
    [Google Scholar]
  11. Deng, K., Blick, R. J., Liu, W. & Hansen, E. J. ( 2006; ). Identification of Francisella tularensis genes affected by iron limitation. Infect Immun 74, 4224–4236.[CrossRef]
    [Google Scholar]
  12. Fortier, A. H., Green, S. J., Polsinelli, T., Jones, T. R., Crawford, R. M., Leiby, D. A., Elkins, K. L., Meltzer, M. S. & Nacy, C. A. ( 1994; ). Life and death of an intracellular pathogen: Francisella tularensis and the macrophage. Immunol Ser 60, 349–361.
    [Google Scholar]
  13. Golovliov, I., Baranov, V., Krocova, Z., Kovarova, H. & Sjostedt, A. ( 2003a; ). An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 71, 5940–5950.[CrossRef]
    [Google Scholar]
  14. Golovliov, I., Sjostedt, A., Mokrievich, A. & Pavlov, V. ( 2003b; ). A method for allelic replacement in Francisella tularensis. FEMS Microbiol Lett 222, 273–280.[CrossRef]
    [Google Scholar]
  15. Gray, C. G., Cowley, S. C., Cheung, K. K. & Nano, F. E. ( 2002; ). The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol Lett 215, 53–56.[CrossRef]
    [Google Scholar]
  16. Kipreos, E. T. & Pagano, M. ( 2000; ). The F-box protein family. Genome Biol 1, REVIEWS3002
    [Google Scholar]
  17. Lai, X. H., Golovliov, I. & Sjostedt, A. ( 2004; ). Expression of IglC is necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis. Microb Pathog 37, 225–230.[CrossRef]
    [Google Scholar]
  18. Lauriano, C. M., Barker, J. R., Nano, F. E., Arulanandam, B. P. & Klose, K. E. ( 2003; ). Allelic exchange in Francisella tularensis using PCR products. FEMS Microbiol Lett 229, 195–202.[CrossRef]
    [Google Scholar]
  19. Lauriano, C. M., Barker, J. R., Yoon, S.-S., Nano, F. E., Arulanandam, B. P., Hassett, D. J. & Klose, K. E. ( 2004; ). MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 101, 4246–4249.[CrossRef]
    [Google Scholar]
  20. Lenco, J., Hubalek, M., Larsson, P., Fucikova, A., Brychta, M., Macela, A. & Stulik, J. ( 2007; ). Proteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC. FEMS Microbiol Lett 269, 11–21.[CrossRef]
    [Google Scholar]
  21. Ludu, J. S., de Bruin, O. M., Duplantis, B. N., Schmerk, C. L., Chou, A. Y., Elkins, K. L. & Nano, F. E. ( 2008a; ). The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol 190, 4584–4595.[CrossRef]
    [Google Scholar]
  22. Ludu, J. S., Nix, E. B., Duplantis, B. N., de Bruin, O. M., Gallagher, L. A., Hawley, L. M. & Nano, F. E. ( 2008b; ). Genetic elements for selection, deletion mutagenesis and complementation in Francisella spp. FEMS Microbiol Lett 278, 86–93.[CrossRef]
    [Google Scholar]
  23. Mohapatra, N. P., Soni, S., Bell, B. L., Warren, R., Ernst, R. K., Muszynski, A., Carlson, R. W. & Gunn, J. S. ( 2007; ). Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun 75, 3305–3314.[CrossRef]
    [Google Scholar]
  24. Nano, F. E. & Schmerk, C. ( 2007; ). The Francisella pathogenicity island. Ann N Y Acad Sci 1105, 122–137.[CrossRef]
    [Google Scholar]
  25. Nano, F. E., Zhang, N., Cowley, S. C., Klose, K. E., Cheung, K. K., Roberts, M. J., Ludu, J. S., Letendre, G. W., Meierovics, A. I. & other authors ( 2004; ). A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186, 6430–6436.[CrossRef]
    [Google Scholar]
  26. Nix, E. B., Cheung, K. K., Wang, D., Zhang, N., Burke, R. D. & Nano, F. E. ( 2006; ). Virulence of Francisella spp. in chicken embryos. Infect Immun 74, 4809–4816.[CrossRef]
    [Google Scholar]
  27. Osborn, M. J., Gander, J. E. & Parisi, E. ( 1972; ). Mechanism of assembly of the outer membrane of Salmonella typhimurium. Site of synthesis of lipopolysaccharide. J Biol Chem 247, 3973–3986.
    [Google Scholar]
  28. Proctor, R. A., White, J. D., Ayala, E. & Canonico, P. G. ( 1975; ). Phagocytosis of Francisella tularensis by Rhesus monkey peripheral leukocytes. Infect Immun 11, 146–151.
    [Google Scholar]
  29. Santic, M., Molmeret, M., Klose, K. E., Jones, S. & Kwaik, Y. A. ( 2005; ). The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol 7, 969–979.[CrossRef]
    [Google Scholar]
  30. Schmerk, C. L., Duplantis, B. N., Howard, P. L. & Nano, F. E. ( 2009; ). A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology 155, 1498–1504.[CrossRef]
    [Google Scholar]
  31. Tempel, R., Lai, X. H., Crosa, L., Kozlowicz, B. & Heffron, F. ( 2006; ). Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect Immun 74, 5095–5105.[CrossRef]
    [Google Scholar]
  32. Tzfira, T., Vaidya, M. & Citovsky, V. ( 2004; ). Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431, 87–92.[CrossRef]
    [Google Scholar]
  33. Wang, R. F. & Kushner, S. R. ( 1991; ). Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100, 195–199.[CrossRef]
    [Google Scholar]
  34. Weiss, D. S., Brotcke, A., Henry, T., Margolis, J. J., Chan, K. & Monack, D. M. ( 2007; ). In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 104, 6037–6042.[CrossRef]
    [Google Scholar]
  35. Wu, H. Y., Chung, P. C., Shih, H. W., Wen, S. R. & Lai, E. M. ( 2008; ). Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190, 2841–2850.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025379-0
Loading
/content/journal/micro/10.1099/mic.0.025379-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error