1887

Abstract

Although , the group B , is a leading cause of invasive neonatal disease worldwide the molecular basis of its virulence is still poorly understood. To investigate the role of lipoproteins in the physiology and interaction of this pathogen with host cells, we generated a mutant strain (A909ΔLgt) deficient in the Lgt enzyme and thus unable to lipidate lipoprotein precursors (pro-lipoproteins). The loss of pro-lipoprotein lipidation did not affect the viability of or its growth in several different media, including cation-depleted media. The processing of two well-characterized lipoproteins, but not a non-lipoprotein, was clearly shown to be aberrant in A909ΔLgt. The mutant strain was shown to be more sensitive to oxidative stress although the molecular basis of this increased sensitivity was not apparent. The inactivation of Lgt also resulted in changes to the bacterial cell envelope, as demonstrated by reduced retention of both the group B carbohydrate and the polysaccharide capsule and a statistically significant reduction (=0.0079) in A909ΔLgt adherence to human endothelial cells of fetal origin. These data confirm that failure to process lipoproteins correctly has pleiotropic effects that may be of significance to colonization and pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025213-0
2009-05-01
2020-10-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1451.html?itemId=/content/journal/micro/10.1099/mic.0.025213-0&mimeType=html&fmt=ahah

References

  1. Baumgärtner M., Karst U., Gerstel B., Loessner M., Wehland J., Jansch L.. 2007; Inactivation of Lgt allows systematic characterization of lipoproteins from Listeria monocytogenes . J Bacteriol189:313–324
    [Google Scholar]
  2. Biswas I., Gruss A., Ehrlich S. D., Maguin E.. 1993; High-efficiency gene inactivation and replacement system for Gram-positive bacteria. J Bacteriol175:3628–3635
    [Google Scholar]
  3. Braun V., Wu H. C.. 1994; Lipoproteins: structure–function, biosynthesis and model for protein export. New Comp Biochem27:319–341
    [Google Scholar]
  4. Bray B. A., Sutcliffe I. C., Harrington D. J.. 2009; Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron. Antonie Van Leeuwenhoek95:101–109
    [Google Scholar]
  5. Brodeur B. R., Boyer M., Charlebois I., Hamel J., Couture F., Rioux C. R., Martin D.. 2000; Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infect Immun68:5610–5618
    [Google Scholar]
  6. Bubeck Wardenburg J., Williams W. A., Missiakas D.. 2006; Host defenses against Staphylococcus aureus infection require recognition of bacterial lipoproteins. Proc Natl Acad Sci U S A103:13831–13836
    [Google Scholar]
  7. Chaffin D. O., Beres S. B., Yim H. H., Rubens C. E.. 2000; The serotype of type Ia and III group B streptococci is determined by the polymerase gene within the polycistronic capsule operon. J Bacteriol182:4466–4477
    [Google Scholar]
  8. Cieslewicz M. J., Chaffin D., Glusman G., Kasper D., Madan A., Rodrigues S., Fahey J., Wessels M. R., Rubens C. E.. 2005; Structural and genetic diversity of Group B Streptococcus capsular polysaccharides. Infect Immun73:3096–3103
    [Google Scholar]
  9. Denham E. L., Ward P. N., Leigh J. A.. 2008; Lipoprotein signal peptides are processed by Lsp and Eep of Streptococcus uberis . J Bacteriol190:4641–4647
    [Google Scholar]
  10. Denham E. L., Ward P. N., Leigh J. A.. 2009; In the absence of Lgt, lipoproteins are shed from Streptococcus uberis independently of Lsp. Microbiology155:134–141
    [Google Scholar]
  11. Dixon S., Haswell M., Harrington D., Sutcliffe I. C.. 2001; Surface immunolocalisation of HPr in the equine pathogen Streptococcus equi . Syst Appl Microbiol24:486–489
    [Google Scholar]
  12. Glaser P., Rusniok C., Buchrieser C., Chevalier F., Frangeul L., Msadek T., Zouine M., Couve E., Lalioui L.. other authors 2002; Genome sequence of Streptococcus agalactiae , a pathogen causing invasive neonatal disease. Mol Microbiol45:1499–1513
    [Google Scholar]
  13. Hamilton A., Harrington D. J., Sutcliffe I. C.. 2000; Characterization of acid phosphatase activities in the equine pathogen Streptococcus equi . Syst Appl Microbiol23:325–329
    [Google Scholar]
  14. Hamilton A., Robinson C., Sutcliffe I. C., Slater J., Maskell D. J., Davis-Poynter N., Smith K., Waller A., Harrington D. J.. 2006; Mutation of the maturase lipoprotein attenuates the virulence of Streptococcus equi to a greater extent than does loss of general lipoprotein lipidation. Infect Immun74:6907–6919
    [Google Scholar]
  15. Heath P. T., Balfour G., Weisner A. M., Esfratiou A., Lamagni T. L., Tighe H., O'Connell L. A. F., Cafferkey M., Verlander N. Q.. other authors 2004; Group B streptococcal disease in UK and Irish infants younger than 90 days. Lancet363:292–294
    [Google Scholar]
  16. Henneke P., Berner R.. 2006; Interaction of neonatal phagocytes with group B Streptococcus : recognition and response. Infect Immun74:3085–3095
    [Google Scholar]
  17. Henneke P., Dramsi S., Mancuso G., Chraibi K., Pellegrini E., Theilacker C., Hubner J., Santos-Sierra S., Teti G.. other authors 2008; Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J Immunol180:6149–6158
    [Google Scholar]
  18. Hutchings M. I., Palmer T., Harrington D. J., Sutcliffe I. C.. 2009; Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'em. Trends Microbiol17:13–21
    [Google Scholar]
  19. Janulczyk R., Ricci S., Björck L.. 2003; MtsABC is important for manganese, iron transport, oxidative stress resistance and virulence of Streptococcus pyogenes . Infect Immun71:2656–2664
    [Google Scholar]
  20. Johnston J. W., Myers L. E., Ochs M. M., Benjamin W. H. Jr, Briles D. E., Hollingshead S. K.. 2004; Lipoprotein PsaA in virulence of Streptococcus pneumoniae : surface accessibility, role in protection from superoxide. Infect Immun72:5858–5867
    [Google Scholar]
  21. Johri A. K., Paoletti L. C., Glaser P., Dua M., Sharma P. K., Grandi G., Rappuoli R.. 2006; Group B Streptococcus : global incidence and vaccine development. Nat Rev Microbiol4:932–942
    [Google Scholar]
  22. Johri A. K., Margarit I., Broenstrup M., Brettoni C., Hua L., Gygi S. P., Telford J. L., Grandi G., Paoletti L. C.. 2007; Transcriptional and proteomic profiles of group B Streptococcus type V reveal potential adherence proteins associated with high-level invasion. Infect Immun75:1473–1483
    [Google Scholar]
  23. Leskelä S., Wahlstron E., Kontinen V. P., Sarvas M.. 1999; Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis : characterization of the lgt gene. Mol Microbiol31:1075–1085
    [Google Scholar]
  24. Low Y. L., Jakubovics N. S., Flatman J. C., Jenkinson H. F., Smith A. W.. 2003; Manganese-dependent regulation of the endocarditis-associated virulence factor EfaA of Enterococcus faecalis . J Med Microbiol52:113–119
    [Google Scholar]
  25. Machata S., Tchatalbachev S., Mohamed W., Jänsch L., Hain T., Chakraboty T.. 2008; Lipoproteins of Listeria monocytogenes are critical for virulence and TLR2-mediated immune activation. J Immunol181:2028–2035
    [Google Scholar]
  26. Maguin E., Prevost H., Ehrlich S. D., Gruss A.. 1996; Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol178:931–935
    [Google Scholar]
  27. Petit C. M., Brown J. R., Ingraham K., Bryant A. P., Holmes D. J.. 2001; Lipid modification of prelipoproteins is dispensable for growth in vitro but essential for virulence in Streptococcus pneumoniae . FEMS Microbiol Lett200:229–233
    [Google Scholar]
  28. Rahman O., Cummings S. P., Harrington D. J., Sutcliffe I. C.. 2008; Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria. World J Microbiol Biotechnol24:2377–2382
    [Google Scholar]
  29. Rubens C. E., Smith S., Hulse M., Chi E. Y., van Belle G.. 1992; Respiratory epithelial cell invasion by group B streptococci. Infect Immun60:5157–5163
    [Google Scholar]
  30. Smith A. J., Ward P. N., Field T. R., Jones C. L., Lincoln R. A., Leigh J. A.. 2003; MtuA, a lipoprotein receptor antigen from Streptococcus uberis is responsible for acquisition of manganese during growth in milk, is essential for infection of the lactating bovine mammary gland. Infect Immun71:4842–4849
    [Google Scholar]
  31. Spellerberg B., Rozdzinski E., Martin S., Weber-Heynemann J., Schnitzler N., Lutticken R., Podbielski A.. 1999; Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect Immun67:871–878
    [Google Scholar]
  32. Stoll H., Dengjel J., Nerz C., Götz F.. 2005; Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. Infect Immun73:2411–2423
    [Google Scholar]
  33. Sutcliffe I. C., Harrington D. J.. 2002; Pattern searches for the identification of putative lipoprotein genes in Gram positive bacterial genomes. Microbiology148:2065–2077
    [Google Scholar]
  34. Sutcliffe I. C., Harrington D. J.. 2004; Putative lipoproteins of Streptococcus agalactiae identified by bioinformatic genome analysis. Antonie Van Leeuwenhoek85:305–315
    [Google Scholar]
  35. Sutcliffe I. C., Russell R. R. B.. 1995; Lipoproteins of Gram-positive bacteria. J Bacteriol177:1123–1128
    [Google Scholar]
  36. Sutcliffe I. C., Black G., Harrington D. J.. 2008; Bioinformatic insights into the biosynthesis of the group B carbohydrate in Streptococcus agalactiae . Microbiology154:1354–1363
    [Google Scholar]
  37. Tenenbaum T., Spellerberg B., Adam R., Vogel M., Kim K. S., Schroten H.. 2007; Streptococcus agalactiae invasion of human brain microvascular endothelial cells is promoted by the laminin-binding protein Lmb. Microbes Infect9:714–720
    [Google Scholar]
  38. Tettelin H., Masignani V., Cieslewicz M. J., Eisen J. A., Peterson S., Wessels M. R., Paulsen I. T., Nelson K. E., Margarit I.. other authors 2002; Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae . Proc Natl Acad Sci U S A99:12391–12396
    [Google Scholar]
  39. Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L.. other authors 2005; Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A102:13950–13955
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025213-0
Loading
/content/journal/micro/10.1099/mic.0.025213-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error