1887

Abstract

Enterohaemorrhagic (EHEC) O157 : H7 is naturally exposed to a wide variety of stresses including gastric acid shock, and yet little is known about how this stress influences virulence. This study investigated the impact of acid stress on several critical virulence properties including survival, host adhesion, Shiga toxin production, motility and induction of host-cell apoptosis. Several acid-stress protocols with relevance for gastric passage as well as external environmental exposure were included. Acute acid stress at pH 3 preceded by acid adaptation at pH 5 significantly enhanced the adhesion of surviving organisms to epithelial cells and bacterial induction of host-cell apoptosis. Motility was also significantly increased after acute acid stress. Interestingly, neither secreted nor periplasmic levels of Shiga toxin were affected by acid shock. Pretreatment of bacteria with erythromycin eliminated the acid-induced adhesion enhancement, suggesting that protein synthesis was required for the enhanced adhesion of acid-shocked organisms. DNA microarray was used to analyse the transcriptome of an EHEC O157 : H7 strain exposed to three different acid-stress treatments. Expression profiles of acid-stressed EHEC revealed significant changes in virulence factors associated with adhesion, motility and type III secretion. These results document profound changes in the virulence properties of EHEC O157 : H7 after acid stress, provide a comprehensive genetic analysis to substantiate these changes and suggest strategies that this pathogen may use during gastric passage and colonization in the human gastrointestinal tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025171-0
2009-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2907.html?itemId=/content/journal/micro/10.1099/mic.0.025171-0&mimeType=html&fmt=ahah

References

  1. Abe, H., Tatsuno, I., Tobe, T., Okutani, A. & Sasakawa, C. ( 2002; ). Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157 : H7. Infect Immun 70, 3500–3509.[CrossRef]
    [Google Scholar]
  2. Barnett Foster, D. E., Philpott, D., Abul-Milh, M., Huesca, M., Sherman, P. M. & Lingwood, C. A. ( 1999; ). Phosphatidylethanolamine recognition promotes enteropathogenic and enterohemorrhagic Escherichia coli host cell attachment. Microb Pathog 27, 289–301.[CrossRef]
    [Google Scholar]
  3. Barnett Foster, D., Abul-Milh, M., Huesca, M. & Lingwood, C. A. ( 2000; ). Enterohemorrhagic Escherichia coli induces apoptosis which augments bacterial binding and phosphatidylethanolamine exposure on the plasma membrane outer leaflet. Infect Immun 68, 3108–3115.[CrossRef]
    [Google Scholar]
  4. Blackburn, D., Husband, A., Saldana, Z., Nada, R. A., Klena, J., Qadri, F. & Giron, J. A. ( 2009; ). Distribution of the Escherichia coli common pilus (ECP) among diverse strains of human enterotoxigenic E. coli. J Clin Microbiol 47, 1781–1784.[CrossRef]
    [Google Scholar]
  5. Brunder, W., Khan, A. S., Hacker, J. & Karch, H. ( 2001; ). Novel type of fimbriae encoded by the large plasmid of sorbitol-fermenting enterohemorrhagic Escherichia coli O157 : H(−). Infect Immun 69, 4447–4457.[CrossRef]
    [Google Scholar]
  6. Conte, M. P., Petrone, G., Di Biase, A. M., Ammendolia, M. G., Superti, F. & Seganti, L. ( 2000; ). Acid tolerance in Listeria monocytogenes influences invasiveness of enterocyte-like cells and macrophage-like cells. Microb Pathog 29, 137–144.[CrossRef]
    [Google Scholar]
  7. de Jesus, M. C., Urban, A. A., Marasigan, M. E. & Barnett Foster, D. E. ( 2005; ). Acid and bile salt stress of enteropathogenic Escherichia coli enhances adhesion to epithelial cells and alters glycolipid receptor binding specificity. J Infect Dis 192, 1430–1440.[CrossRef]
    [Google Scholar]
  8. Deng, W., Puente, J. L., Gruenheid, S., Li, Y., Vallance, B. A., Vazquez, A., Barba, J., Ibarra, J. A., O'Donnell, P. & other authors ( 2004; ). Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101, 3597–3602.[CrossRef]
    [Google Scholar]
  9. Duffy, G., Riordan, D. C. R., Sheridan, J. J., Call, J. E., Whiting, R. C., Blair, I. S. & McDowell, D. A. ( 2000; ). Effect of pH on survival, thermotolerance and verotoxin production of Escherichia coli O157 : H7 during simulated fermentation and storage. J Food Prot 63, 12–18.
    [Google Scholar]
  10. Dytoc, M., Fedorko, L., Huesca, M., Gold, B., Louie, M., Crowe, S., Lingwood, C., Brunton, J. & Sherman, P. ( 1993; ). Comparison of Helicobacter pylori and attaching-effacing Escherichia coli adhesion to eukaryotic cells. Infect Immun 61, 448–456.
    [Google Scholar]
  11. Erdem, A. L., Avelino, F., Xicohtencatl-Cortes, J. & Giron, J. A. ( 2007; ). Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol 189, 7426–7435.[CrossRef]
    [Google Scholar]
  12. Erickson, M. C. & Doyle, M. P. ( 2007; ). Food as a vehicle for transmission of Shiga toxin-producing Escherichia coli. J Food Prot 70, 2426–2449.
    [Google Scholar]
  13. Fernandez, R. C., Logan, S. M., Lee, S. H. & Hoffman, P. S. ( 1996; ). Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence. Infect Immun 64, 1968–1976.
    [Google Scholar]
  14. Fitzmaurice, J., Glennon, M., Duffy, G., Sheridan, J. J., Carroll, C. & Maher, M. ( 2004; ). Application of real-time PCR and RT-PCR assays for the detection and quantitation of VT 1 and VT 2 toxin genes in E. coli O157 : H7. Mol Cell Probes 18, 123–132.[CrossRef]
    [Google Scholar]
  15. Foster, J. W. ( 2004; ). Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2, 898–907.[CrossRef]
    [Google Scholar]
  16. Giron, J. A., Torres, A. G., Freer, E. & Kaper, J. B. ( 2002; ). The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44, 361–379.[CrossRef]
    [Google Scholar]
  17. Griffin, P. M., Ostroff, S. M., Tauxe, R. V., Greene, K. D., Wells, J. G., Lewis, J. H. & Blake, P. A. ( 1988; ). Illnesses associated with Escherichia coli O157 : H7 infections: a broad clinical spectrum. Ann Intern Med 109, 705–712.[CrossRef]
    [Google Scholar]
  18. Hanna, M. N., Ferguson, R. J., Li, Y. H. & Cvitkovitch, D. G. ( 2001; ). uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. J Bacteriol 183, 5964–5973.[CrossRef]
    [Google Scholar]
  19. Hennequin, C., Porcheray, F., Waligora-Dupriet, A. J., Collignon, A., Barc, M., Bourlioux, P. & Karjalainen, T. ( 2001; ). GroEL of Clostridium difficile is involved in cell adherence. Microbiology 147, 87–96.
    [Google Scholar]
  20. Hoey, D. E., Sharp, L., Currie, C., Lingwood, C. A., Gally, D. L. & Smith, D. G. ( 2003; ). Verotoxin 1 binding to intestinal crypt epithelial cells results in localization to lysosomes and abrogation of toxicity. Cell Microbiol 5, 85–97.[CrossRef]
    [Google Scholar]
  21. Hoffman, P. S. & Garduno, R. A. ( 1999; ). Surface-associated heat shock proteins of Legionella pneumophila and Helicobacter pylori: roles in pathogenesis and immunity. Infect Dis Obstet Gynecol 7, 58–63.
    [Google Scholar]
  22. Huesca, M., Borgia, S., Hoffman, P. & Lingwood, C. A. ( 1996; ). Acidic pH changes receptor binding of Helicobacter pylori: a binary adhesion model in which surface heat-shock (stress) proteins mediate sulfatide recognition in gastric colonization. Infect Immun 64, 2643–2648.
    [Google Scholar]
  23. Hurley, B. P., Thorpe, C. M. & Acheson, D. W. ( 2001; ). Shiga toxin translocation across intestinal epithelial cells is enhanced by neutrophil transmigration. Infect Immun 69, 6148–6155.[CrossRef]
    [Google Scholar]
  24. Johnson, J. R., Jelacic, S., Schoening, L. M., Clabots, C., Shaikh, N., Mobley, H. L. T. & Tarr, P. I. ( 2005; ). The IrgA homologue adhesin iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect Immun 73, 965–971.[CrossRef]
    [Google Scholar]
  25. Kannan, G., Wilks, J. C., Fitzgerald, D. M., Jones, B. D., Bondurant, S. S. & Slonczewski, J. L. ( 2008; ). Rapid acid treatment of Escherichia coli: transcriptomic response and recovery. BMC Microbiol 8, 37 [CrossRef]
    [Google Scholar]
  26. Kaper, J. B. & Karmali, M. A. ( 2008; ). The continuing evolution of a bacterial pathogen. Proc Natl Acad Sci U S A 105, 4535–4536.[CrossRef]
    [Google Scholar]
  27. Karmali, M. A., Petric, M., Lim, C., Cheung, R. & Arbus, G. S. ( 1985a; ). Sensitive method for detecting low numbers of verotoxin-producing Escherichia coli in mixed cultures by use of colony sweeps and polymyxin extraction of verotoxin. J Clin Microbiol 22, 614–619.
    [Google Scholar]
  28. Karmali, M. A., Petric, M., Lim, C., Fleming, P. C., Arbus, G. S. & Lior, H. ( 1985b; ). The association between hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis 151, 775–782.[CrossRef]
    [Google Scholar]
  29. Kenny, B., Abe, A., Stein, M. & Finlay, B. B. ( 1997; ). Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract. Infect Immun 65, 2606–2612.
    [Google Scholar]
  30. Khan, S. & Macnab, R. M. ( 1980; ). Proton chemical potential, proton electrical potential and bacterial motility. J Mol Biol 138, 599–614.[CrossRef]
    [Google Scholar]
  31. Leenanon, B., Elhanafi, D. & Drake, M. A. ( 2003; ). Acid adaptation and starvation effects on Shiga toxin production by Escherichia coli O157 : H7. J Food Prot 66, 970–977.
    [Google Scholar]
  32. Li, Y., Xia, H., Bai, F., Xu, H., Yang, L., Yao, H., Zhang, L., Zhang, X., Bai, Y. & other authors ( 2007; ). Identification of a new gene PA5017 involved in flagella-mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa. FEMS Microbiol Lett 272, 188–195.[CrossRef]
    [Google Scholar]
  33. Lin, J., Smith, M. P., Chapin, K. C., Baik, H. S., Bennett, G. N. & Foster, J. W. ( 1996; ). Mechanisms of acid resistance in enterohemorrhagic E. coli. Appl Environ Microbiol 62, 3094–3100.
    [Google Scholar]
  34. Lloyd, A. L., Rasko, D. A. & Mobley, H. L. ( 2007; ). Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol 189, 3532–3546.[CrossRef]
    [Google Scholar]
  35. Low, A. S., Holden, N., Rosser, T., Roe, A. J., Constantinidou, C., Hobman, J. L., Smith, D. G., Low, J. C. & Gally, D. L. ( 2006; ). Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157 : H7. Environ Microbiol 8, 1033–1047.[CrossRef]
    [Google Scholar]
  36. Mahajan, A., Currie, C. G., Mackie, S., Tree, J., McAteer, S., McKendrick, I., McNeilly, T. N., Roe, A., La Ragione, R. M. & other authors ( 2009; ). An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157 : H7 with bovine intestinal epithelium. Cell Microbiol 11, 121–137.[CrossRef]
    [Google Scholar]
  37. Maurer, L. M., Yohannes, E., Bondurant, S. S., Radmacher, M. & Slonczewski, J. L. ( 2005; ). pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187, 304–319.[CrossRef]
    [Google Scholar]
  38. McKee, M. L. & O'Brien, A. D. ( 1996; ). Truncated enterohemorrhagic Escherichia coli (EHEC) O157 : H7 intimin (EaeA) fusion proteins promote adherence of EHEC strains to HEp-2 cells. Infect Immun 64, 2225–2233.
    [Google Scholar]
  39. McKee, M. L., Melton-Celsa, A. R., Moxley, R. A., Francis, D. H. & O'Brien, A. D. ( 1995; ). Enterohemorrhagic Escherichia coli O157 : H7 requires intimin to colonize the gnotobiotic pig intestine and to adhere to HEp2 cells. Infect Immun 63, 3739–3744.
    [Google Scholar]
  40. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. ( 1999; ). Food-related illness and death in the United States. Emerg Infect Dis 5, 607–625.[CrossRef]
    [Google Scholar]
  41. Minamino, T., Imae, Y., Oosawa, F., Kobayashi, Y. & Oosawa, K. ( 2003; ). Effect of intracellular pH on rotational speed of bacterial flagellar motors. J Bacteriol 185, 1190–1194.[CrossRef]
    [Google Scholar]
  42. Nakamura, S., Kami-ike, N., Yokota, J. P., Kudo, S., Minamino, T. & Namba, K. ( 2009; ). Effect of intracellular pH on the torque-speed relationship of bacterial proton-driven flagellar motor. J Mol Biol 386, 332–338.[CrossRef]
    [Google Scholar]
  43. Nakanishi, N., Abe, H., Ogura, Y., Hayashi, T., Tashiro, K., Kuhara, S., Sugimoto, N. & Tobe, T. ( 2006; ). ppGpp with DksA controls gene expression in the locus of enterocyte effacement (LEE) pathogenicity island of enterohaemorrhagic Escherichia coli through activation of two virulence regulatory genes. Mol Microbiol 61, 194–205.[CrossRef]
    [Google Scholar]
  44. Noller, A. C., McEllistrem, M. C., Stine, O. C., Morris, J. G., Jr, Boxrud, D. J., Dixon, B. & Harrison, L. H. ( 2003; ). Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157 : H7 isolates that are distinct by pulsed-field gel electrophoresis. J Clin Microbiol 41, 675–679.[CrossRef]
    [Google Scholar]
  45. O'Driscoll, B., Gahan, C. G. & Hill, C. ( 1996; ). Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol 62, 1693–1698.
    [Google Scholar]
  46. Polen, T., Rittmann, D., Wendisch, V. F. & Sahm, H. ( 2003; ). DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69, 1759–1774.[CrossRef]
    [Google Scholar]
  47. Price, S. B., Wright, J. C., DeGraves, F. J., Castanie-Cornet, M. P. & Foster, J. W. ( 2004; ). Acid resistance systems required for survival of Escherichia coli O157 : H7 in the bovine gastrointestinal tract and in apple cider are different. Appl Environ Microbiol 70, 4792–4799.[CrossRef]
    [Google Scholar]
  48. Puente, J. L., Bieber, D., Ramer, S. W., Murray, W. & Schoolnik, G. K. ( 1996; ). The bundle-forming pili of enteropathogenic Escherichia coli: transcriptional regulation by environmental signals. Mol Microbiol 20, 87–100.[CrossRef]
    [Google Scholar]
  49. Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M. & Swerdlow, D. L. ( 2005; ). Epidemiology of Escherichia coli O157 : H7 outbreaks, United States, 1982–2002. Emerg Infect Dis 11, 603–609.[CrossRef]
    [Google Scholar]
  50. Robinson, C. M., Sinclair, J. F., Smith, M. J. & O'Brien, R. D. ( 2006; ). Shiga toxin of enterohemorrhagic Escherichia coli type O157 : H7 promotes intestinal colonization. Proc Natl Acad Sci U S A 103, 9667–9672.[CrossRef]
    [Google Scholar]
  51. Rosenshine, I., Ruschowski, S. & Finlay, B. B. ( 1996; ). Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. Infect Immun 64, 966–973.
    [Google Scholar]
  52. Shin, S., Castranie-Cornet, M. P., Foster, J. W., Crawford, J. A., Brinkley, C. & Kaper, J. B. ( 2001; ). An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of plasmid regulator, per. Mol Microbiol 41, 1133–1150.
    [Google Scholar]
  53. Sperandio, V., Li, C. C. & Kaper, J. B. ( 2002; ). Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect Immun 70, 3085–3093.[CrossRef]
    [Google Scholar]
  54. Tam, P. J. & Lingwood, C. A. ( 2007; ). Membrane cytosolic translocation of verotoxin A1 subunit in target cells. Microbiology 153, 2700–2710.[CrossRef]
    [Google Scholar]
  55. Tarr, P. I., Bilge, S. S., Vary, J. C., Jr, Jelacic, S., Habeeb, R. L., Ward, T. R., Baylor, M. R. & Besser, T. E. ( 2000; ). Iha: a novel Escherichia coli O157 : H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun 68, 1400–1407.[CrossRef]
    [Google Scholar]
  56. Tarr, P. I., Gordon, C. A. & Chandler, W. L. ( 2005; ). Shiga-toxin-producing Escherichia coli and hemolytic uremic syndrome. Lancet 365, 1073–1086.
    [Google Scholar]
  57. Tatsuno, I., Horie, M., Abe, H., Miki, T., Makino, K., Shinagawa, H., Taguchi, H., Kamiya, S., Hayashi, T. & Sasakawa, C. ( 2001; ). toxB gene on pO157 of enterohemorrhagic Escherichia coli O157 : H7 is required for full epithelial cell adherence phenotype. Infect Immun 69, 6660–6669.[CrossRef]
    [Google Scholar]
  58. Tatsuno, I., Nagano, K., Taguchi, K., Rong, L., Mori, H. & Sasakawa, C. ( 2003; ). Increased adherence to CaCo-2 cells caused by disruption of the yhiE and yhiF genes in enterohemorrhagic Escherichia coli O157 : H7. Infect Immun 71, 2598–2606.[CrossRef]
    [Google Scholar]
  59. Tobe, T., Beatson, S. A., Taniguchi, H., Abe, H., Bailey, C. M., Fivian, A., Younis, R., Matthews, S., Marches, O. & other authors ( 2006; ). An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A 103, 14941–14946.[CrossRef]
    [Google Scholar]
  60. Torres, A. G., Zhou, X. & Kaper, J. B. ( 2005; ). Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect Immun 73, 18–29.[CrossRef]
    [Google Scholar]
  61. Tuttle, J., Gomez, T., Doyle, M. P., Wells, J. G., Zhao, T., Tauxe, R. V. & Griffin, P. M. ( 1999; ). Lessons from a large outbreak of Escherichia coli O157 : H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol Infect 122, 185–192.[CrossRef]
    [Google Scholar]
  62. Tzipori, S., Karch, H., Wachsmuth, I. K., Robins-Browne, R. M., O'Brien, A. D., Lior, H., Cohen, M. L., Smithers, J. & Levine, M. M. ( 1987; ). Role of a 60-megadalton plasmid and Shiga-like toxins in the pathogenesis of infection caused by enterohemorrhagic Escherichia coli O157 : H7 in gnotobiotic piglets. Infect Immun 55, 3117–3125.
    [Google Scholar]
  63. Waligora, A. J., Barc, M. C., Bourlioux, P., Collignon, A. & Karjalainen, T. ( 1999; ). Clostridium difficile cell attachment is modified by environmental factors. Appl Environ Microbiol 65, 4234–4238.
    [Google Scholar]
  64. Wu, Y., Lau, B., Smith, S., Troyan, K. & Barnett Foster, D. E. ( 2004; ). Enteropathogenic Escherichia coli infection triggers host phospholipid metabolism perturbations. Infect Immun 72, 6764–6772.[CrossRef]
    [Google Scholar]
  65. Xicohtencatl-Cortes, J., Monteiro-Neto, V., Saldana, Z., Ledesma, M. A., Puente, J. L. & Giron, J. A. ( 2009; ). The type 4 pili of enterohemorrhagic Escherichia coli O157 : H7 are multipurpose structures with pathogenic attributes. J Bacteriol 191, 411–421.[CrossRef]
    [Google Scholar]
  66. Yoh, M., Frimpong, E. K. & Honda, T. ( 1997; ). Effect of antimicrobial agents, especially fosfomycin, on the production and release of verotoxin by enterohemorrhagic Escherichia coli O157 : H7. FEMS Immunol Med Microbiol 19, 57–64.[CrossRef]
    [Google Scholar]
  67. Yuk, H. G. & Marshall, D. L. ( 2004; ). Adaptation of Escherichia coli O157 : H7 to pH alters membrane lipid composition, verotoxin secretion and resistance to simulated gastric fluid acid. Appl Environ Microbiol 70, 3500–3505.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025171-0
Loading
/content/journal/micro/10.1099/mic.0.025171-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2907 - 2918

Primers used for real-time PCR [ PDF] (10 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error