1887

Abstract

Bacterial strains differ in their ability to cause hospital outbreaks. Using comparative genomic hybridization, complex isolates were studied to identify genetic markers specific for complex outbreak strains. No outbreak-specific genes were found that were common in all investigated outbreak strains. Therefore, the aim of our study was to identify specific genetic markers for an outbreak strain (EHOS) that caused a nationwide outbreak in The Netherlands. Most EHOS isolates carried a large conjugative plasmid (pQC) containing genes encoding heavy-metal resistance, mobile elements, pili-associated proteins and exported proteins as well as multiple-resistance genes. Furthermore, the chromosomally encoded high-pathogenicity island (HPI) was highly associated with the EHOS strain. In addition, other DNA fragments were identified that were associated with virulence: three DNA fragments known to be located on a virulence plasmid (pLVPK), as well as phage- and plasmid-related sequences. Also, four DNA fragments encoding putative pili with the most homology to pili of were associated with the EHOS. Finally, four DNA fragments encoding putative outer-membrane proteins were negatively associated with the EHOS. In conclusion, resistance and putative virulence genes were identified in the EHOS that may have contributed to increased epidemicity. The high number of genes detected in the EHOS that were related to transferable elements reflects the genomic plasticity of the complex and may explain the emergence of the EHOS in the hospital environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024828-0
2009-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1478.html?itemId=/content/journal/micro/10.1099/mic.0.024828-0&mimeType=html&fmt=ahah

References

  1. Akopyants, N. S., Clifton, S. W., Martin, J., Pape, D., Wylie, T., Li, L., Kissinger, J. C., Roos, D. S. & Beverley, S. M. ( 2001; ). A survey of the Leishmania major Friedlin strain V1 genome by shotgun sequencing: a resource for DNA microarrays and expression profiling. Mol Biochem Parasitol 113, 337–340.[CrossRef]
    [Google Scholar]
  2. Bach, S., de Almeida, A. & Carniel, E. ( 2000; ). The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol Lett 183, 289–294.[CrossRef]
    [Google Scholar]
  3. Baquero, F. ( 2004; ). From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol 2, 510–518.[CrossRef]
    [Google Scholar]
  4. Bearden, S. W., Fetherston, J. D. & Perry, R. D. ( 1997; ). Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun 65, 1659–1668.
    [Google Scholar]
  5. Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. ( 2001; ). Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125, 279–284.[CrossRef]
    [Google Scholar]
  6. Beuscher, H. U., Rodel, F., Forsberg, A. & Rollinghoff, M. ( 1995; ). Bacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression. Infect Immun 63, 1270–1277.
    [Google Scholar]
  7. Carniel, E., Guiyoule, A., Guilvout, I. & Mercereau-Puijalon, O. ( 1992; ). Molecular cloning, iron-regulation and mutagenesis of the irp2 gene encoding HMWP2, a protein specific for the highly pathogenic Yersinia. Mol Microbiol 6, 379–388.[CrossRef]
    [Google Scholar]
  8. Chen, Y. T., Chang, H. Y., Lai, Y. C., Pan, C. C., Tsai, S. F. & Peng, H. L. ( 2004; ). Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337, 189–198.[CrossRef]
    [Google Scholar]
  9. Chen, Y. T., Lauderdale, T. L., Liao, T. L., Shiau, Y. R., Shu, H. Y., Wu, K. M., Yan, J. J., Su, I. J. & Tsai, S. F. ( 2007; ). Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 beta-lactamases in Klebsiella pneumoniae. Antimicrob Agents Chemother 51, 3004–3007.[CrossRef]
    [Google Scholar]
  10. Chouikha, I., Germon, P., Bree, A., Gilot, P., Moulin-Schouleur, M. & Schouler, C. ( 2006; ). A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol 188, 977–987.[CrossRef]
    [Google Scholar]
  11. de Almeida, A. M., Guiyoule, A., Guilvout, I., Iteman, I., Baranton, G. & Carniel, E. ( 1993; ). Chromosomal irp2 gene in Yersinia: distribution, expression, deletion and impact on virulence. Microb Pathog 14, 9–21.[CrossRef]
    [Google Scholar]
  12. Delmas, J., Breysse, F., Devulder, G., Flandrois, J. P. & Chomarat, M. ( 2006; ). Rapid identification of Enterobacteriaceae by sequencing DNA gyrase subunit B encoding gene. Diagn Microbiol Infect Dis 55, 263–268.[CrossRef]
    [Google Scholar]
  13. Dobrindt, U., Agerer, F., Michaelis, K., Janka, A., Buchrieser, C., Samuelson, M., Svanborg, C., Gottschalk, G., Karch, H. & other authors ( 2003; ). Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185, 1831–1840.[CrossRef]
    [Google Scholar]
  14. Emody, L., Kerenyi, M. & Nagy, G. ( 2003; ). Virulence factors of uropathogenic Escherichia coli. Int J Antimicrob Agents 22 (Suppl. 2), 29–33.[CrossRef]
    [Google Scholar]
  15. Felsenstein, J. ( 2005; ). phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.
  16. Fernandéz, L. A. & Berenguer, J. ( 2000; ). Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol Rev 24, 21–44.[CrossRef]
    [Google Scholar]
  17. Fitzgerald, J. R., Sturdevant, D. E., Mackie, S. M., Gill, S. R. & Musser, J. M. ( 2001; ). Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc Natl Acad Sci U S A 98, 8821–8826.[CrossRef]
    [Google Scholar]
  18. Fitzgerald, J. R., Reid, S. D., Ruotsalainen, E., Tripp, T. J., Liu, M., Cole, R., Kuusela, P., Schlievert, P. M., Järvinen, A. & other authors ( 2003; ). Genome diversification in Staphylococcus aureus: molecular evolution of a highly variable chromosomal region encoding the staphylococcal exotoxin-like family of proteins. Infect Immun 71, 2827–2838.[CrossRef]
    [Google Scholar]
  19. Fluit, A. C., Verhoef, J. & Schmitz, F. J. ( 2001; ). Frequency of isolation and antimicrobial resistance of gram-negative and gram-positive bacteria from patients in intensive care units of 25 European university hospitals participating in the European arm of the SENTRY Antimicrobial Surveillance Program 1997–1998. Eur J Clin Microbiol Infect Dis 20, 617–625.
    [Google Scholar]
  20. Fukiya, S., Mizoguchi, H., Tobe, T. & Mori, H. ( 2004; ). Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J Bacteriol 186, 3911–3921.[CrossRef]
    [Google Scholar]
  21. García, A., Navarro, F., Miró, E., Villa, L., Mirelis, B., Coll, P. & Carattoli, A. ( 2007; ). Acquisition and diffusion of bla CTX-M-9 gene by R478-IncHI2 derivative plasmids. FEMS Microbiol Lett 271, 71–77.[CrossRef]
    [Google Scholar]
  22. García Fernández, A., Cloeckaert, A., Bertini, A., Praud, K., Doublet, B., Weill, F. X. & Carattoli, A. ( 2007; ). Comparative analysis of IncHI2 plasmids carrying bla CTX-M-2 or bla CTX-M-9 from Escherichia coli and Salmonella enterica strains isolated from poultry and humans. Antimicrob Agents Chemother 51, 4177–4180.[CrossRef]
    [Google Scholar]
  23. Gilmour, M. W., Thomson, N. R., Sanders, M., Parkhill, J. & Taylor, D. E. ( 2004; ). The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52, 182–202.[CrossRef]
    [Google Scholar]
  24. Israel, D. A., Salama, N., Krishna, U., Rieger, U. M., Atherton, J. C., Falkow, S. & Peek, R. M., Jr ( 2001; ). Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc Natl Acad Sci U S A 98, 14625–14630.[CrossRef]
    [Google Scholar]
  25. John, J. F., Jr, Sharbaugh, R. J. & Bannister, E. R. ( 1982; ). Enterobacter cloacae: bacteremia, epidemiology, and antibiotic resistance. Rev Infect Dis 4, 13–28.[CrossRef]
    [Google Scholar]
  26. Johnson, T. J., Wannemeuhler, Y. M., Scaccianoce, J. A., Johnson, S. J. & Nolan, L. K. ( 2006; ). Complete DNA sequence, comparative genomics, and prevalence of an IncHI2 plasmid occurring among extraintestinal pathogenic Escherichia coli isolates. Antimicrob Agents Chemother 50, 3929–3933.[CrossRef]
    [Google Scholar]
  27. Jones, R. N. ( 2003; ). Global epidemiology of antimicrobial resistance among community-acquired and nosocomial pathogens: a five-year summary from the SENTRY Antimicrobial Surveillance Program (1997–2001). Semin Respir Crit Care Med 24, 121–134.[CrossRef]
    [Google Scholar]
  28. Jongerius, I., Köhl, J., Pandey, M. K., Ruyken, M., van Kessel, K. P. M., van Strijp, J. A. G. & Rooijakkers, S. H. M. ( 2007; ). Staphylococcal complement evasion by various convertase-blocking molecules. J Exp Med 204, 2461–2471.[CrossRef]
    [Google Scholar]
  29. Kim, C. C., Joyce, E. A., Chan, K. & Falkow, S. ( 2002; ). Improved analytical methods for microarray-based genome-composition analysis. Genome Biol 3, RESEARCH0065
    [Google Scholar]
  30. Koczura, R. & Kaznowski, A. ( 2003; ). Occurrence of the Yersinia high-pathogenicity island and iron uptake systems in clinical isolates of Klebsiella pneumoniae. Microb Pathog 35, 197–202.[CrossRef]
    [Google Scholar]
  31. Leavis, H. L., Bonten, M. J. M. & Willems, R. J. L. ( 2006; ). Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr Opin Microbiol 9, 454–460.[CrossRef]
    [Google Scholar]
  32. Leavis, H. L., Willems, R. J. L., van Wamel, W. J. B., Schuren, F. H. J., Caspers, M. P. M. & Bonten, M. J. M. ( 2007; ). Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium. PLoS Pathog 3, e7 [CrossRef]
    [Google Scholar]
  33. Leverstein-van Hall, M. A., Blok, H. E. M., Paauw, A., Fluit, A. C., Troelstra, A., Mascini, E. M., Bonten, M. J. M. & Verhoef, J. ( 2006; ). Extensive hospital-wide spread of a multidrug-resistant Enterobacter cloacae clone, with late detection due to a variable antibiogram and frequent patient transfer. J Clin Microbiol 44, 518–524.[CrossRef]
    [Google Scholar]
  34. Lin, T. L., Lee, C. Z., Hsieh, P. F., Tsai, S. F. & Wang, J. T. ( 2008; ). Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess. J Bacteriol 190, 515–526.[CrossRef]
    [Google Scholar]
  35. Lindsay, J. A., Moore, C. E., Day, N. P., Peacock, S. J., Witney, A. A., Stabler, R. A., Husain, S. E., Butcher, P. D. & Hinds, J. ( 2006; ). Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188, 669–676.[CrossRef]
    [Google Scholar]
  36. Mokracka, J., Koczura, R. & Kaznowski, A. ( 2004; ). Yersiniabactin and other siderophores produced by clinical isolates of Enterobacter spp. and Citrobacter spp. FEMS Immunol Med Microbiol 40, 51–55.[CrossRef]
    [Google Scholar]
  37. Novais, A., Canton, R., Valverde, A., Machado, E., Galan, J. C., Peixe, L., Carattoli, A., Baquero, F. & Coque, T. M. ( 2006; ). Dissemination and persistence of bla CTX-M-9 are linked to class 1 integrons containing CR1 associated with defective transposon derivatives from Tn402 located in early antibiotic resistance plasmids of IncHI2, IncP1-alpha, and IncFI groups. Antimicrob Agents Chemother 50, 2741–2750.[CrossRef]
    [Google Scholar]
  38. Paauw, A., Fluit, A. C., Verhoef, J. & Leverstein-van Hall, M. A. ( 2006; ). Enterobacter cloacae outbreak and emergence of quinolone resistance gene in Dutch hospital. Emerg Infect Dis 12, 807–812.[CrossRef]
    [Google Scholar]
  39. Paauw, A., Verhoef, J., Fluit, A. C., Blok, H. E. M., Hopmans, T. E. M., Troelstra, A. & Leverstein-van Hall, M. A. ( 2007; ). Failure to control an outbreak of qnrA1-positive multidrug-resistant Enterobacter cloacae infection despite adequate implementation of recommended infection control measures. J Clin Microbiol 45, 1420–1425.[CrossRef]
    [Google Scholar]
  40. Paauw, A., Caspers, M. P. M., Schuren, F. H. J., Leverstein-van Hall, M. A., Deletoile, A., Montijn, R. C., Verhoef, J. & Fluit, A. C. ( 2008; ). Genomic diversity within the Enterobacter cloacae complex. PLoS One 3, e3018 [CrossRef]
    [Google Scholar]
  41. Petermann, S. R., Sherwood, J. S. & Logue, C. M. ( 2008; ). The Yersinia high pathogenicity island is present in Salmonella enterica subspecies I isolated from turkeys. Microb Pathog 45, 110–114.[CrossRef]
    [Google Scholar]
  42. Porwollik, S., Wong, R. M. Y. & McClelland, M. ( 2002; ). Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc Natl Acad Sci U S A 99, 8956–8961.[CrossRef]
    [Google Scholar]
  43. Ramos, J. L., Martinez-Bueno, M., Molina-Henares, A. J., Teran, W., Watanabe, K., Zhang, X., Gallegos, M. T., Brennan, R. & Tobes, R. ( 2005; ). The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69, 326–356.[CrossRef]
    [Google Scholar]
  44. Rooijakkers, S. H. M., Ruyken, M., Roos, A., Daha, M. R., Presanis, J. S., Sim, R. B., van Wamel, W. J. B., van Kessel, K. P. M. & van Strijp, J. A. G. ( 2005; ). Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6, 920–927.[CrossRef]
    [Google Scholar]
  45. Salama, N., Guillemin, K., McDaniel, T. K., Sherlock, G., Tompkins, L. & Falkow, S. ( 2000; ). A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci U S A 97, 14668–14673.[CrossRef]
    [Google Scholar]
  46. Salerno, A., Delétoile, A., Lefevre, M., Ciznar, I., Krovacek, K., Grimont, P. & Brisse, S. ( 2007; ). Recombining population structure of Plesiomonas shigelloides (Enterobacteriaceae) revealed by multilocus sequence typing. J Bacteriol 189, 7808–7818.[CrossRef]
    [Google Scholar]
  47. Sanders, W. E., Jr & Sanders, C. C. ( 1997; ). Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin Microbiol Rev 10, 220–241.
    [Google Scholar]
  48. Sauer, F. G., Mulvey, M. A., Schilling, J. D., Martinez, J. J. & Hultgren, S. J. ( 2000; ). Bacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol 3, 65–72.[CrossRef]
    [Google Scholar]
  49. Schubert, S., Rakin, A., Karch, H., Carniel, E. & Heesemann, J. ( 1998; ). Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66, 480–485.
    [Google Scholar]
  50. Schubert, S., Cuenca, S., Fischer, D. & Heesemann, J. ( 2000; ). High-pathogenicity island of Yersinia pestis in Enterobacteriaceae isolated from blood cultures and urine samples: prevalence and functional expression. J Infect Dis 182, 1268–1271.[CrossRef]
    [Google Scholar]
  51. Schubert, S., Picard, B., Gouriou, S., Heesemann, J. & Denamur, E. ( 2002; ). Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections. Infect Immun 70, 5335–5337.[CrossRef]
    [Google Scholar]
  52. Streit, J. M., Jones, R. N., Sader, H. S. & Fritsche, T. R. ( 2004; ). Assessment of pathogen occurrences and resistance profiles among infected patients in the intensive care unit: report from the SENTRY Antimicrobial Surveillance Program (North America, 2001). Int J Antimicrob Agents 24, 111–118.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024828-0
Loading
/content/journal/micro/10.1099/mic.0.024828-0
Loading

Data & Media loading...

Supplements

Flag filtered, normalized log transformed data [ Text file] (2.5 Mb) Comparative results from the 106 DNA fragments putatively derived from plasmid pQC [ Excel file] (45 kb) Comparative results from 100 DNA fragments most associated with EHOS (all <0.001) [ Excel file] (46 kb)

TEXT

Flag filtered, normalized log transformed data [ Text file] (2.5 Mb) Comparative results from the 106 DNA fragments putatively derived from plasmid pQC [ Excel file] (45 kb) Comparative results from 100 DNA fragments most associated with EHOS (all <0.001) [ Excel file] (46 kb)

EXCEL

Flag filtered, normalized log transformed data [ Text file] (2.5 Mb) Comparative results from the 106 DNA fragments putatively derived from plasmid pQC [ Excel file] (45 kb) Comparative results from 100 DNA fragments most associated with EHOS (all <0.001) [ Excel file] (46 kb)

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error