1887

Abstract

CYC 1086 secretes a killer toxin (PMKT2) that is inhibitory to a variety of spoilage yeasts and fungi of agronomical interest. The killer toxin in the culture supernatant was concentrated by ultrafiltration and purified to homogeneity by two successive steps, including native electrophoresis and HPLC gel filtration. Biochemical characterization of the toxin showed it to be a protein with an apparent molecular mass of 30 kDa and an isoelectric point of 3.7. At pH 4.5, optimal killer activity was observed at temperatures up to 20 °C. Above approximately this pH, activity decreased sharply and was barely noticeable at pH 6. The toxin concentrations present in the supernatant during optimal production conditions exerted a fungicidal effect on a variety of fungal and yeast strains. The results obtained suggest that PMKT2 has different physico-chemical properties from PMKT as well as different potential uses in the biocontrol of spoilage yeasts. PMKT2 was able to inhibit while was fully resistant, indicating that PMKT2 could be used in wine fermentations to avoid the development of the spoilage yeast without deleterious effects on the fermentative strain. In small-scale fermentations, PMKT2, as well as CYC 1086, was able to inhibit , verifying the biocontrol activity of PMKT2 in simulated winemaking conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023663-0
2009-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/624.html?itemId=/content/journal/micro/10.1099/mic.0.023663-0&mimeType=html&fmt=ahah

References

  1. Aguilar Uscanga, M. G., Delia, M. L. & Strehaiano, P. ( 2000; ). Nutritional requirements of Brettanomyces bruxellensis: growth and physiology in batch and chemostat cultures. Can J Microbiol 46, 1046–1050.[CrossRef]
    [Google Scholar]
  2. Barandica, J. M., Santos, A., Marquina, D., López, F., Acosta, F. J. & Peinado, J. M. ( 1999; ). A mathematical model for toxin accumulation by killer yeasts based on the yeast population growth. J Appl Microbiol 86, 805–811.[CrossRef]
    [Google Scholar]
  3. Beever, R. E., Larcy, E. P. & Pak, H. A. ( 1989; ). Strains of Botrytis cinerea resistant to dicarboximide and benzimidazole fungicides in New Zealand vineyards. Plant Pathol 38, 427–437.[CrossRef]
    [Google Scholar]
  4. Bostian, K. A., Elliott, Q. A., Bussey, H., Burn, V., Smith, A. & Tipper, D. J. ( 1984; ). Sequence of the preprotoxin dsRNA gene of type I killer yeast: multiple processing events produce a two-component toxin. Cell 36, 741–751.[CrossRef]
    [Google Scholar]
  5. Breinig, F., Tipper, D. J. & Schmitt, M. J. ( 2002; ). Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108, 395–405.[CrossRef]
    [Google Scholar]
  6. Butler, A. R., White, J. H. & Stark, M. J. R. ( 1991; ). Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137, 1749–1757.[CrossRef]
    [Google Scholar]
  7. Ciani, M. & Fatichenti, F. ( 2001; ). Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Appl Environ Microbiol 67, 3058–3063.[CrossRef]
    [Google Scholar]
  8. Comitini, F., Ingenis De, J., Pepe, L., Mannazu, I. & Ciani, M. ( 2004; ). Pichia anomala and Kluyveromyces wikerhamii killer toxins as new tool against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol Lett 238, 235–240.[CrossRef]
    [Google Scholar]
  9. Couto, J. A., Neves, F., Campos, F. & Hoog, T. ( 2005; ). Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces. Int J Food Microbiol 104, 337–344.[CrossRef]
    [Google Scholar]
  10. Druvefors, U. A. & Schnürer, J. ( 2005; ). Mold-inhibitory activity of different yeast species during airtight storage of wheat grain. FEMS Yeast Res 5, 373–378.[CrossRef]
    [Google Scholar]
  11. Druvefors, U. A., Passoth, V. & Schnürer, J. ( 2005; ). Nutrient effects on biocontrol of Penicillium roqueforti by Pichia anomala J121 during airtight storage of wheat. Appl Environ Microbiol 71, 1865–1869.[CrossRef]
    [Google Scholar]
  12. Fernandez, M., Ubeda, J. F. & Briones, A. I. ( 2000; ). Typing of non-Saccharomyces yeasts with enzymatic activities of interest in winemaking. Int J Food Microbiol 59, 29–36.[CrossRef]
    [Google Scholar]
  13. Fleet, G. H. ( 1990; ). Yeasts in dairy products. J Appl Bacteriol 68, 199–211.[CrossRef]
    [Google Scholar]
  14. Fleet, G. H. ( 1991; ). Cell walls. In The Yeasts, p. 200. Edited by A. H. Rose & J. S. Harrison. London: Academic Press.
  15. Fleet, G. H. & Phaff, H. J. ( 1973; ). Effect of glucanases of yeast and bacterial origin on cell walls of Schizosaccharomyces species. In Yeast, Mould and Plant Protoplasts, pp. 33–59. Edited by J. R. Villanueva, J. García-Acha, S. Gascón & F. Uruburu. London: Academic Press.
  16. Heard, G. M. & Fleet, G. H. ( 1987; ). Occurrence and growth of killer yeasts during wine fermentations. Appl Environ Microbiol 53, 2171–2174.
    [Google Scholar]
  17. Heard, G. M. & Fleet, G. H. ( 1988; ). The effects of temperature and pH on the growth of yeast species during the fermentation of grape juice. J Appl Bacteriol 65, 23–28.[CrossRef]
    [Google Scholar]
  18. Hutchins, K. & Bussey, H. ( 1983; ). Cell wall receptor for yeast killer toxin: involvement of (1→6)-β-d-glucan. J Bacteriol 154, 161–169.
    [Google Scholar]
  19. Izgu, F., Altinbay, D. & Yucelis, A. ( 1997; ). Identification and killer activity of a yeast contaminating starter cultures of Saccharomyces cerevisiae strains used in the Turkish baking industry. Food Microbiol 14, 125–131.[CrossRef]
    [Google Scholar]
  20. Izgü, F., Altinbay, D. & Türeli, A. E. ( 2007; ). In vitro susceptibilities of Candida spp. to Panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434. Microbiol Immunol 51, 797–803.[CrossRef]
    [Google Scholar]
  21. Jakobsen, M. & Narvhus, N. ( 1995; ). Yeasts and their possible beneficial and negative effects on the quality of dairy products. Int Dairy J 6, 755–768.
    [Google Scholar]
  22. Janisiewicz, W. J. & Korsten, L. ( 2002; ). Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40, 411–441.[CrossRef]
    [Google Scholar]
  23. Janisiewicz, W. J., Tworkoski, T. J. & Kurtzman, C. P. ( 2001; ). Biocontrol potential of Metchnikowia pulcherrima strains against blue mold of apple. Phytopathology 91, 1098–1108.[CrossRef]
    [Google Scholar]
  24. Kimura, T., Kitamoto, N., Imura, Y. & Kito, Y. ( 1995; ). Production of HM-1 killer toxin in Saccharomyces cerevisiae transformed with the PDR4 gene and σ-sequence-mediated multi-integration system. J Ferment Bioeng 5, 423–428.
    [Google Scholar]
  25. Klassen, R. & Meinhardt, F. ( 2003; ). Structural and functional analysis of the killer element pPin1–3 from Pichia inositovora. Mol Genet Genomics 270, 190–199.[CrossRef]
    [Google Scholar]
  26. Klassen, R., Paluszynski, J. P., Wemhoff, S., Pfeiffer, A., Fricke, J. & Meinhardt, F. ( 2008; ). The primary target of the killer toxin from Pichia acaciae is tRNA(Gln). Mol Microbiol 69, 681–697.[CrossRef]
    [Google Scholar]
  27. Kurtzman, C. P. & Fell, J. W. ( 1998; ). The Yeasts, a Taxonomic Study. Amsterdam: Elsevier.
  28. Kurtzman, C. P. & Robnett, C. J. ( 1998; ). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73, 331–371.[CrossRef]
    [Google Scholar]
  29. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  30. Lambrechts, M. G. & Pretorius, I. S. ( 2000; ). Yeast and its importance to wine aroma. South African J Enol Viticult 21, 97–129.
    [Google Scholar]
  31. Lenoir, J. ( 1984; ). The surface flora and its role in the ripening of cheese. IDF Bull 171, 3–19.
    [Google Scholar]
  32. Llorente, P., Marquina, D., Santos, A., Peinado, J. M. & Spencer-Martins, I. ( 1997; ). Effect of salt on the killer phenotype of yeasts from olive brines. Appl Environ Microbiol 63, 1165–1167.
    [Google Scholar]
  33. Lowes, K. F., Shearmen, C. A., Payne, J., MacKenzie, D., Archer, D. B., Merry, R. J. & Gasson, M. J. ( 2000; ). Prevention of yeast spoilage in feed and food by the yeast mycocin HMK. Appl Environ Microbiol 66, 1066–1076.[CrossRef]
    [Google Scholar]
  34. Manners, D. J., Masson, A. J. & Patterson, J. C. ( 1973; ). The structure of a β-(1–3)-d-glucan from yeast cell walls. Biochem J 135, 19–30.
    [Google Scholar]
  35. Marín, S., Hodzić, I., Ramos, A. J. & Sanchos, V. ( 2008; ). Predicting the growth/no-growth boundary and ochratoxin A production by Aspergillus carbonarius in pistachio nuts. Food Microbiol 25, 683–689.[CrossRef]
    [Google Scholar]
  36. Marquina, D., Peres, C., Caldas, F. V., Marques, J. F., Peinado, J. M. & Spencer-Martins, I. ( 1992; ). Characterization of the yeast populations in olive brines. Lett Appl Microbiol 14, 279–283.[CrossRef]
    [Google Scholar]
  37. Marquina, D., Toufani, S., Llorente, P., Santos, A. & Peinado, J. M. ( 1997; ). Killer activity in yeast isolates from olive brines. Adv Food Sci 19, 41–46.
    [Google Scholar]
  38. Martinac, B., Zhu, H., Kubalski, A., Zhou, X. L., Culbertson, M., Bussey, H. & Kung, C. T. ( 1990; ). Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc Natl Acad Sci U S A 87, 6228–6232.[CrossRef]
    [Google Scholar]
  39. Masih, E. I. & Paul, B. ( 2002; ). Secretion of β-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mould disease of the grapevine. Curr Microbiol 44, 391–395.[CrossRef]
    [Google Scholar]
  40. McCracken, D. A., Martin, V. J., Stark, M. J. R. & Bolen, P. L. ( 1994; ). The linear-plasmid-encoded toxin produced by the yeast Pichia acaciae: characterization and comparison with the toxin Kluyveromyces lactis. Microbiology 140, 425–431.[CrossRef]
    [Google Scholar]
  41. Medawar, W., Strehaiano, P. & Délia, M. L. ( 2003; ). Yeast growth: lag phase modelling in alcoholic media. Food Microbiol 20, 527–532.[CrossRef]
    [Google Scholar]
  42. Middelbeek, E. J., Hermans, J. M. H. & Stumm, C. ( 1979; ). Production, purification and properties of a Pichia kluyveri killer toxin. Antonie Van Leeuwenhoek 45, 437–450.[CrossRef]
    [Google Scholar]
  43. Noronha-da-Costa, P., Rodrigues, C., Spencer-Martins, I. & Loureiro, V. ( 1996; ). Fatty acid patterns of film-forming yeasts and new evidence for the heterogeneity of Pichia membranaefaciens. Lett Appl Microbiol 23, 79–84.[CrossRef]
    [Google Scholar]
  44. Petering, J. E., Symons, M. R., Langridge, P. & Henschke, P. A. ( 1991; ). Determination of killer yeast activity in fermenting grape juice by using a marked Saccharomyces wine yeast strain. Appl Environ Microbiol 57, 3232–3236.
    [Google Scholar]
  45. Petersson, S. & Schnürer, J. ( 1995; ). Biocontrol of mold growth in high-moisture wheat stored under airtight conditions by Pichia anomala, Pichia guilliermondii, and Saccharomyces cerevisiae. Appl Environ Microbiol 61, 1027–1032.
    [Google Scholar]
  46. Pfeiffer, P. & Radler, F. ( 1984; ). Comparison of the killer toxin of several yeasts and the purification of a toxin type K2. Arch Microbiol 137, 357–361.[CrossRef]
    [Google Scholar]
  47. Raposo, R., Gómez, V., Urrutia, T. & Melgarejo, P. ( 2000; ). Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology 90, 1246–1249.[CrossRef]
    [Google Scholar]
  48. Renouf, V. & Lonvaud-Funel, A. ( 2004; ). Racking are key stages for the microbial stabilization of wines. J Int des Sciences de la Vigne et du Vin 38, 219–224.
    [Google Scholar]
  49. Renouf, V., Gindreau, E., Claisse, O. & Lonvaud-Funel, A. ( 2005; ). Microbial changes during malolactic fermentation in red wine elaboration. J Int des Sciences de la Vigne et du Vin 39, 179–190.
    [Google Scholar]
  50. Renouf, V., Falcou, M., Miot-Sertier, M., Perello, M. C., de Revel, G. & Lonvaud-Funel, A. ( 2006; ). Interactions between Brettanomyces bruxellensis and other yeast species during the initial stages of winemaking. J Appl Microbiol 100, 1208–1219.[CrossRef]
    [Google Scholar]
  51. Renouf, V., Strehaiano, P. & Lonvaud-Funel, A. ( 2008; ). Effectiveness of dimethlydicarbonate to prevent Brettanomyces bruxellensis growth in wine. Food Contr 19, 208–216.[CrossRef]
    [Google Scholar]
  52. Rodrigues, N., Goncalves, G., Pereira-da-Silva, S., Malfeito-Ferreira, M. & Loureiro, V. ( 2001; ). Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces sp. J Appl Microbiol 90, 588–599.[CrossRef]
    [Google Scholar]
  53. Santos, A. & Marquina, D. ( 2004a; ). Killer toxin of Pichia membranifaciens and its possible use as a biopreservative agent to control grey mould disease of grapevine. Microbiology 150, 2527–2534.[CrossRef]
    [Google Scholar]
  54. Santos, A. & Marquina, D. ( 2004b; ). Ion channel activity by Pichia membranifaciens killer toxin. Yeast 21, 151–162.[CrossRef]
    [Google Scholar]
  55. Santos, A., Marquina, D., Leal, J. A. & Peinado, J. M. ( 2000; ). (1→6)-β-d-Glucan as cell wall receptor for Pichia membranifaciens killer toxin. Appl Environ Microbiol 66, 1809–1813.[CrossRef]
    [Google Scholar]
  56. Santos, A., Sánchez, A. & Marquina, D. ( 2004; ). Yeast as biological agents to control Botrytis cinerea. Microbiol Res 159, 331–338.[CrossRef]
    [Google Scholar]
  57. Santos, A., Álvarez, M., San Mauro, M., Abrusci, C. & Marquina, D. ( 2005; ). The transcriptional response of Saccharomyces cerevisiae to Pichia membranifaciens killer toxin. J Biol Chem 280, 41881–41892.[CrossRef]
    [Google Scholar]
  58. Santos, A., San Mauro, M., Abrusci, C. & Marquina, D. ( 2007; ). Cwp2p, the plasma membrane receptor of Pichia membranifaciens killer toxin. Mol Microbiol 64, 831–843.[CrossRef]
    [Google Scholar]
  59. Schmitt, M. J. & Breinig, F. ( 2006; ). Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4, 212–221.[CrossRef]
    [Google Scholar]
  60. Schmitt, M. & Radler, F. ( 1987; ). Mannoprotein of the yeast cell wall as primary receptor for the killer toxin of Saccharomyces cerevisiae strain 28. J Gen Microbiol 133, 3347–3354.
    [Google Scholar]
  61. Schmitt, M. J., Klavehn, P., Wang, J., Schönig, I. & Tipper, D. J. ( 1996; ). Cell cycle studies on the mode of action of yeast K28 killer toxin. Microbiology 142, 2655–2662.[CrossRef]
    [Google Scholar]
  62. Studte, P., Zink, S., Jablonowski, D., Bär, C., von der Haar, T., Tuite, M. F. & Schaffrath, R. ( 2008; ). tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Mol Microbiol 69, 1266–1277.[CrossRef]
    [Google Scholar]
  63. Suárez, R., Surez-Lepe, J. A., Morata, A. & Calderon, F. ( 2007; ). The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: a review. Food Chem 102, 10–21.[CrossRef]
    [Google Scholar]
  64. Suriyarachchi, V. R. & Fleet, G. H. ( 1981; ). Occurrence and growth of yeasts in yogurts. Appl Environ Microbiol 42, 574–579.
    [Google Scholar]
  65. Suzuki, C. & Nikkuni, S. ( 1994; ). The primary and subunit structure of a novel type killer toxin produced by a halotolerant yeast, Pichia farinosa. J Biol Chem 269, 3041–3046.
    [Google Scholar]
  66. Takasuka, T., Komiyama, T., Furuichi, Y. & Watanabe, T. ( 1995; ). Cell wall synthesis specific cytocidal effect of Hansenula mrakii toxin-1 on Saccharomyces cerevisiae. Cell Mol Biol Res 41, 575–581.
    [Google Scholar]
  67. Takita, M. A. & Castilho-Valavicius, B. ( 1993; ). Absence of cell wall chitin in Saccharomyces cerevisiae leads to resistance to Kluyveromyces lactis killer toxin. Yeast 9, 589–598.[CrossRef]
    [Google Scholar]
  68. Wang, X., Chi, Z., Yue, L. & Li, J. ( 2007; ). Purification and characterization of killer toxin from a marine yeast Pichia anomala YF07b against the pathogenic yeast in crab. Curr Microbiol 55, 396–401.[CrossRef]
    [Google Scholar]
  69. Wickner, R. B. ( 1986; ). Double-stranded RNA replication in yeast: the killer system. Annu Rev Biochem 55, 373–395.[CrossRef]
    [Google Scholar]
  70. Woods, D. R. & Bevan, E. A. ( 1968; ). Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. J Gen Microbiol 51, 115–126.[CrossRef]
    [Google Scholar]
  71. Young, T. W. ( 1987; ). Killer yeasts. In The Yeasts, pp. 131–164. Edited by A. H. Rose & J. S. Harrison. London: Academic Press.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023663-0
Loading
/content/journal/micro/10.1099/mic.0.023663-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error