1887

Abstract

Regulation of the flagellar gene cascade involves the transcription factors (RpoN), employed for expression of genes required midway through flagellar assembly, and (FliA), required for expression of late genes. Previous studies revealed that mutations in genes encoding components of the flagellar protein export apparatus block expression of the RpoN and FliA regulons. FlhB is a membrane-bound component of the export apparatus that possesses a large cytoplasmic domain (FlhB). The hook length control protein FliK interacts with FlhB to modulate the substrate specificity of the export apparatus. FlhB undergoes autocleavage as part of the switch in substrate specificity. Consistent with previous reports, deletion of in interfered with expression of RpoN-dependent reporter genes, while deletion of stimulated expression of these reporter genes. In the Δ mutant, disrupting did not restore expression of RpoN-dependent reporter genes, suggesting that the inhibitory effect of the Δ mutation is not due to the inability to export FliK. Amino acid substitutions (N265A and P266G) at the putative autocleavage site of FlhB prevented processing of FlhB and export of filament-type substrates. The FlhB variants supported wild-type expression of RpoN- and FliA-dependent reporter genes. In the strain producing FlhB, expression of RpoN- and FliA-dependent reporter genes was inhibited when was disrupted. In contrast, expression of these reporter genes was unaffected or slightly stimulated when was disrupted in the strain producing FlhB. HP1575 (FlhX) shares homology with the C-terminal portion of FlhB (FlhB) and can substitute for FlhB in flagellar assembly. Disrupting inhibited expression of a reporter gene in the wild-type but not in the Δ mutant or strains producing FlhB variants, suggesting a role for FlhX or FlhB in normal expression of the RpoN regulon. Taken together, these data indicate that the mechanism by which the flagellar protein export apparatus exerts control over the RpoN regulon is complex and involves more than simply switching substrate specificity of the flagellar protein export apparatus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022806-0
2009-04-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/4/1170.html?itemId=/content/journal/micro/10.1099/mic.0.022806-0&mimeType=html&fmt=ahah

References

  1. Allan, E., Dorrell, N., Foynes, S., Anyim, M. & Wren, B. W. ( 2000; ). Mutational analysis of genes encoding the early flagellar components of Helicobacter pylori: evidence for transcriptional regulation of flagellin A biosynthesis. J Bacteriol 182, 5274–5277.[CrossRef]
    [Google Scholar]
  2. Anderson, P. E. & Gober, J. W. ( 2000; ). FlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5′ untranslated region of flagellin mRNA. Mol Microbiol 38, 41–52.[CrossRef]
    [Google Scholar]
  3. Beier, D. & Frank, R. ( 2000; ). Molecular characterization of two-component systems of Helicobacter pylori. J Bacteriol 182, 2068–2076.[CrossRef]
    [Google Scholar]
  4. Beier, D., Spohn, G., Rappuoli, R. & Scarlato, V. ( 1997; ). Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. J Bacteriol 179, 4676–4683.
    [Google Scholar]
  5. Brahmachary, P., Dashti, M. G., Olson, J. W. & Hoover, T. R. ( 2004; ). Helicobacter pylori FlgR is an enhancer-independent activator of σ 54-RNA polymerase holoenzyme. J Bacteriol 186, 4535–4542.[CrossRef]
    [Google Scholar]
  6. Chilcott, G. S. & Hughes, K. T. ( 2000; ). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64, 694–708.[CrossRef]
    [Google Scholar]
  7. Colland, F., Rain, J. C., Gounon, P., Labigne, A., Legrain, P. & De Reuse, H. ( 2001; ). Identification of the Helicobacter pylori anti-σ 28 factor. Mol Microbiol 41, 477–487.[CrossRef]
    [Google Scholar]
  8. Correa, N. E., Barker, J. R. & Klose, K. E. ( 2004; ). The Vibrio cholerae FlgM homologue is an anti-σ 28 factor that is secreted through the sheathed polar flagellum. J Bacteriol 186, 4613–4619.[CrossRef]
    [Google Scholar]
  9. Deane, J. E., Graham, S. C., Mitchell, E. P., Flot, D., Johnson, S. & Lea, S. M. ( 2008; ). Crystal structure of Spa40, the specificity switch for the Shigella flexneri type III secretion system. Mol Microbiol 69, 267–276.[CrossRef]
    [Google Scholar]
  10. Ferris, H. U., Furukawa, Y., Minamino, T., Kroetz, M. B., Kihara, M., Namba, K. & Macnab, R. M. ( 2005; ). FlhB regulates ordered export of flagellar components via autocleavage mechanism. J Biol Chem 280, 41236–41242.[CrossRef]
    [Google Scholar]
  11. Fraser, G. M., Hirano, T., Ferris, H. U., Devgan, L. L., Kihara, M. & Macnab, R. M. ( 2003; ). Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB. Mol Microbiol 48, 1043–1057.[CrossRef]
    [Google Scholar]
  12. Geis, G., Suerbaum, S., Forsthoff, B., Leying, H. & Opferkuch, W. ( 1993; ). Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J Med Microbiol 38, 371–377.[CrossRef]
    [Google Scholar]
  13. Hendrixson, D. R. & DiRita, V. J. ( 2003; ). Transcription of σ 54-dependent but not σ 28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50, 687–702.[CrossRef]
    [Google Scholar]
  14. Heuermann, D. & Haas, R. ( 1998; ). A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol Gen Genet 257, 519–528.[CrossRef]
    [Google Scholar]
  15. Hughes, K. T., Gillen, K. L., Semon, M. J. & Karlinsey, J. E. ( 1993; ). Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262, 1277–1280.[CrossRef]
    [Google Scholar]
  16. Jenks, P. J., Foynes, S., Ward, S. J., Constantinidou, C., Penn, C. W. & Wren, B. W. ( 1997; ). A flagellar-specific ATPase (FliI) is necessary for flagellar export in Helicobacter pylori. FEMS Microbiol Lett 152, 205–211.[CrossRef]
    [Google Scholar]
  17. Josenhans, C., Niehus, E., Amersbach, S., Horster, A., Betz, C., Drescher, B., Hughes, K. T. & Suerbaum, S. ( 2002; ). Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome. Mol Microbiol 43, 307–322.[CrossRef]
    [Google Scholar]
  18. Joyce, E. A., Bassler, B. L. & Wright, A. ( 2000; ). Evidence for a signaling system in Helicobacter pylori: detection of a luxS-encoded autoinducer. J Bacteriol 182, 3638–3643.[CrossRef]
    [Google Scholar]
  19. Kamal, N., Dorrell, N., Jagannathan, A., Turner, S. M., Constantinidou, C., Studholme, D. J., Marsden, G., Hinds, J., Laing, K. G. & other authors ( 2007; ). Deletion of a previously uncharacterized flagellar-hook-length control gene fliK modulates the σ 54-dependent regulon in Campylobacter jejuni. Microbiology 153, 3099–3111.[CrossRef]
    [Google Scholar]
  20. Kim, J. S., Chang, J. H., Chung, S. I. & Yum, J. S. ( 1999; ). Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. J Bacteriol 181, 6969–6976.
    [Google Scholar]
  21. Kutsukake, K., Minamino, T. & Yokoseki, T. ( 1994; ). Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium. J Bacteriol 176, 7625–7629.
    [Google Scholar]
  22. Lee, W. K., Ogura, K., Loh, J. T., Cover, T. L. & Berg, D. E. ( 2006; ). Quantitative effect of luxS gene inactivation on the fitness of Helicobacter pylori. Appl Environ Microbiol 72, 6615–6622.[CrossRef]
    [Google Scholar]
  23. Leying, H., Suerbaum, S., Geis, G. & Haas, R. ( 1992; ). Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol Microbiol 6, 2863–2874.[CrossRef]
    [Google Scholar]
  24. Loh, J. T., Forsyth, M. H. & Cover, T. L. ( 2004; ). Growth phase regulation of flaA expression in Helicobacter pylori is luxS dependent. Infect Immun 72, 5506–5510.[CrossRef]
    [Google Scholar]
  25. Macnab, R. M. ( 2003; ). How bacteria assemble flagella. Annu Rev Microbiol 57, 77–100.[CrossRef]
    [Google Scholar]
  26. Merrell, D. S., Goodrich, M. L., Otto, G., Tompkins, L. S. & Falkow, S. ( 2003; ). pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun 71, 3529–3539.[CrossRef]
    [Google Scholar]
  27. Minamino, T. & Macnab, R. M. ( 1999; ). Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181, 1388–1394.
    [Google Scholar]
  28. Minamino, T. & Macnab, R. M. ( 2000; ). Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J Bacteriol 182, 4906–4914.[CrossRef]
    [Google Scholar]
  29. Minamino, T., Iino, T. & Kutuskake, K. ( 1994; ). Molecular characterization of the Salmonella typhimurium flhB operon and its protein products. J Bacteriol 176, 7630–7637.
    [Google Scholar]
  30. Minamino, T., Doi, H. & Kutsukake, K. ( 1999a; ). Substrate specificity switching of the flagellum-specific export apparatus during flagellar morphogenesis in Salmonella typhimurium. Biosci Biotechnol Biochem 63, 1301–1303.[CrossRef]
    [Google Scholar]
  31. Minamino, T., Gonzalez-Pedrajo, B., Yamaguchi, K., Aizawa, S. I. & Macnab, R. M. ( 1999b; ). FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol Microbiol 34, 295–304.[CrossRef]
    [Google Scholar]
  32. Niehus, E., Gressmann, H., Ye, F., Schlapbach, R., Dehio, M., Dehio, C., Stack, A., Meyer, T. F., Suerbaum, S. & Josenhans, C. ( 2004; ). Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Mol Microbiol 52, 947–961.[CrossRef]
    [Google Scholar]
  33. Osaki, T., Hanawa, T., Manzoku, T., Fukuda, M., Kawakami, H., Suzuki, H., Yamaguchi, H., Yan, X., Taguchi, H. & other authors ( 2006; ). Mutation of luxS affects motility and infectivity of Helicobacter pylori in gastric mucosa of a Mongolian gerbil model. J Med Microbiol 55, 1477–1485.[CrossRef]
    [Google Scholar]
  34. Pallen, M. J., Penn, C. W. & Chaudhuri, R. R. ( 2005; ). Bacterial flagellar diversity in the post-genomic era. Trends Microbiol 13, 143–149.[CrossRef]
    [Google Scholar]
  35. Pereira, L. & Hoover, T. R. ( 2005; ). Stable accumulation of σ 54 in Helicobacter pylori requires the novel protein HP0958. J Bacteriol 187, 4463–4469.[CrossRef]
    [Google Scholar]
  36. Porwollik, S., Noonan, B. & O'Toole, P. W. ( 1999; ). Molecular characterization of a flagellar export locus of Helicobacter pylori. Infect Immun 67, 2060–2070.
    [Google Scholar]
  37. Rader, B. A., Campagna, S. R., Semmelhack, M. F., Bassler, B. L. & Guillemin, K. ( 2007; ). The quorum-sensing molecule autoinducer 2 regulates motility and flagellar morphogenesis in Helicobacter pylori. J Bacteriol 189, 6109–6117.[CrossRef]
    [Google Scholar]
  38. Riordan, K. E. & Schneewind, O. ( 2008; ). YscU cleavage and the assembly of Yersinia type III secretion machine complexes. Mol Microbiol 68, 1485–1501.[CrossRef]
    [Google Scholar]
  39. Roncarati, D., Danielli, A., Spohn, G., Delany, I. & Scarlato, V. ( 2007; ). Transcriptional regulation of stress response and motility functions in Helicobacter pylori is mediated by HspR and HrcA. J Bacteriol 189, 7234–7243.[CrossRef]
    [Google Scholar]
  40. Ryan, K. A., Karim, N., Worku, M., Penn, C. W. & O'Toole, P. W. ( 2005; ). Helicobacter pylori flagellar hook-filament transition is controlled by a FliK functional homolog encoded by the gene HP0906. J Bacteriol 187, 5742–5750.[CrossRef]
    [Google Scholar]
  41. Schmitz, A., Josenhans, C. & Suerbaum, S. ( 1997; ). Cloning and characterization of the Helicobacter pylori flbA gene, which codes for a membrane protein involved in coordinated expression of flagellar genes. J Bacteriol 179, 987–997.
    [Google Scholar]
  42. Sorg, I., Wagner, S., Amstutz, M., Muller, S. A., Broz, P., Lussi, Y., Engel, A. & Cornelis, G. R. ( 2007; ). YscU recognizes translocators as export substrates of the Yersinia injectisome. EMBO J 26, 3015–3024.[CrossRef]
    [Google Scholar]
  43. Spohn, G. & Scarlato, V. ( 1999; ). Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J Bacteriol 181, 593–599.
    [Google Scholar]
  44. Stabb, E. V. & Ruby, E. G. ( 2002; ). RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods Enzymol 358, 413–426.
    [Google Scholar]
  45. Suerbaum, S., Josenhans, C. & Labigne, A. ( 1993; ). Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange. J Bacteriol 175, 3278–3288.
    [Google Scholar]
  46. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S. & other authors ( 1997; ). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547.[CrossRef]
    [Google Scholar]
  47. Wand, M. E., Sockett, R. E., Evans, K. J., Doherty, N., Sharp, P. M., Hardie, K. R. & Winzer, K. ( 2006; ). Helicobacter pylori FlhB function: the FlhB C-terminal homologue HP1575 acts as a “spare part” to permit flagellar export when the HP0770 FlhBCC domain is deleted. J Bacteriol 188, 7531–7541.[CrossRef]
    [Google Scholar]
  48. Wang, Y. & Taylor, D. E. ( 1990; ). Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94, 23–28.[CrossRef]
    [Google Scholar]
  49. Williams, A. W., Yamaguchi, S., Togashi, F., Aizawa, S. I., Kawagishi, I. & Macnab, R. M. ( 1996; ). Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J Bacteriol 178, 2960–2970.
    [Google Scholar]
  50. Wu, J. & Newton, A. ( 1997; ). Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Mol Microbiol 24, 233–239.[CrossRef]
    [Google Scholar]
  51. Ye, F., Brauer, T., Niehus, E., Drlica, K., Josenhans, C. & Suerbaum, S. ( 2007; ). Flagellar and global gene regulation in Helicobacter pylori modulated by changes in DNA supercoiling. Int J Med Microbiol 297, 65–81.[CrossRef]
    [Google Scholar]
  52. Zarivach, R., Deng, W., Vuckovic, M., Felise, H. B., Nguyen, H. V., Miller, S. I., Finlay, B. B. & Strynadka, N. C. ( 2008; ). Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS. Nature 453, 124–127.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022806-0
Loading
/content/journal/micro/10.1099/mic.0.022806-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1170 - 1180

Oligonucleotide primers used in this study [PDF file](20 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error