1887

Abstract

is a nitrogen-fixing soil bacterium that produces the exopolysaccharide alginate. In this report we describe the isolation and characterization of strain GG4, which carries an  : : Tn mutation resulting in alginate overproduction. The gene encodes a subunit of the Na-translocating NADH : ubiquinone oxidoreductase (Na-NQR). As expected, Na-NQR activity was abolished in mutant GG4. When this strain was complemented with the genes this activity was restored and alginate production was reduced to wild-type levels. Na-NQR may be the main sodium pump of under the conditions tested (∼2 mM Na) since no Na/H-antiporter activity was detected. Collectively our results indicate that in the lack of Na-NQR activity caused the absence of a transmembrane Na gradient and an increase in alginate production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022533-0
2009-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/249.html?itemId=/content/journal/micro/10.1099/mic.0.022533-0&mimeType=html&fmt=ahah

References

  1. Alexeyev, M. F., Shokolenko, I. N. & Croughan, T. P. ( 1995; ). New mini-Tn5 derivatives for insertion mutagenesis and genetic engineering in gram-negative bacteria. Can J Microbiol 41, 1053–1055.[CrossRef]
    [Google Scholar]
  2. Barquera, B., Hellwig, P., Zhou, W., Morgan, J. E., Häse, C. C., Gosink, K. K., Nilges, M., Bruesehoff, P. J., Roth, A. & other authors ( 2002; ). Purification and characterization of the recombinant Na+-translocating NADH : quinone oxidoreductase from Vibrio cholerae. Biochemistry 41, 3781–3789.[CrossRef]
    [Google Scholar]
  3. Bertsova, Y. V. & Bogachev, A. V. ( 2002; ). Operation of the cbb3-type terminal oxidase in Azotobacter vinelandii. Biochemistry (Mosc) 67, 622–626.[CrossRef]
    [Google Scholar]
  4. Bertsova, Y. V. & Bogachev, A. V. ( 2004; ). The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. FEBS Lett 563, 207–212.[CrossRef]
    [Google Scholar]
  5. Bertsova, Y. V., Bogachev, A. V. & Skulachev, V. P. ( 1998; ). Two NADH : ubiquinone oxidoreductases of Azotobacter vinelandii and their role in the respiratory protection. Biochim Biophys Acta 1363, 125–133.[CrossRef]
    [Google Scholar]
  6. Bertsova, Y. V., Bogachev, A. V. & Skulachev, V. P. ( 2001; ). Noncoupled NADH : ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183, 6869–6874.[CrossRef]
    [Google Scholar]
  7. Bogachev, A. V., Bertsova, Y. V., Barquera, B. & Verkhovsky, M. I. ( 2001; ). Sodium-dependent steps in the redox reactions of the Na+-motive NADH : quinone oxidoreductase from Vibrio harveyi. Biochemistry 40, 7318–7323.[CrossRef]
    [Google Scholar]
  8. Bogachev, A. V., Bertsova, Y. V., Ruuge, E. K., Wikstrom, M. & Verkhovsky, M. I. ( 2002; ). Kinetics of the spectral changes during reduction of the Na+-motive NADH : quinone oxidoreductase from Vibrio harveyi. Biochim Biophys Acta 1556, 113–120.[CrossRef]
    [Google Scholar]
  9. Campos, M., Martinez-Salazar, J. M., Lloret, L., Moreno, S., Núñez, C., Espín, G. & Soberon-Chávez, G. ( 1996; ). Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii. J Bacteriol 178, 1793–1799.
    [Google Scholar]
  10. Castañeda, M., Guzmán, J., Moreno, S. & Espín, G. ( 2000; ). The GacS sensor kinase regulates alginate and poly-β-hydroxybutyrate production in Azotobacter vinelandii. J Bacteriol 182, 2624–2628.[CrossRef]
    [Google Scholar]
  11. Castañeda, M., Sanchez, J., Moreno, S., Núñez, C. & Espín, G. ( 2001; ). The global regulators GacA and σ S form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol 183, 6787–6793.[CrossRef]
    [Google Scholar]
  12. Degli Esposti, M., Ghelli, A., Ratta, M., Cortes, D. & Estornell, E. ( 1994; ). Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (complex I). Biochem J 301, 161–167.
    [Google Scholar]
  13. Dibrov, P., Dibrov, E., Pierce, G. N. & Galperin, M. Y. ( 2004; ). Salt in the wound: a possible role of Na+ gradient in chlamydial infection. J Mol Microbiol Biotechnol 8, 1–6.[CrossRef]
    [Google Scholar]
  14. Dibrov, P., Rimon, A., Dzioba, J., Winogrodzki, A., Shalitin, Y. & Padan, E. ( 2005; ). 2-Aminoperimidine, a specific inhibitor of bacterial NhaA Na+/H+ antiporters. FEBS Lett 579, 373–378.[CrossRef]
    [Google Scholar]
  15. Duffy, E. B. & Barquera, B. ( 2006; ). Membrane topology mapping of the Na+-pumping NADH : quinone oxidoreductase from Vibrio cholerae by PhoA-green fluorescent protein fusion analysis. J Bacteriol 188, 8343–8351.[CrossRef]
    [Google Scholar]
  16. Fadeeva, M. S., Núñez, C., Bertsova, Y. V., Espín, G. & Bogachev, A. V. ( 2008; ). Catalytic properties of Na+-translocating NADH : quinone oxidoreductases from Vibrio harveyi, Klebsiella pneumoniae, and Azotobacter vinelandii. FEMS Microbiol Lett 279, 116–123.[CrossRef]
    [Google Scholar]
  17. Gaona, G., Núñez, C., Goldberg, J. B., Linford, A. S., Nájera, R., Castañeda, M., Guzmán, J., Espín, G. & Soberón-Chávez, G. ( 2004; ). Characterization of the Azotobacter vinelandii algC gene involved in alginate and lipopolysaccharide production. FEMS Microbiol Lett 238, 199–206.
    [Google Scholar]
  18. Green, G. N., Kranz, R. G., Lorence, R. M. & Gennis, R. B. ( 1984; ). Identification of subunit I as the cytochrome b 558 component of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem 259, 7994–7997.
    [Google Scholar]
  19. Häse, C. C. & Barquera, B. ( 2001; ). Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 1505, 169–178.[CrossRef]
    [Google Scholar]
  20. Häse, C. C. & Mekalanos, J. J. ( 1999; ). Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 96, 3183–3187.[CrossRef]
    [Google Scholar]
  21. Häse, C. C., Fedorova, N. D., Galperin, M. Y. & Dibrov, P. A. ( 2001; ). Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65, 353–370.[CrossRef]
    [Google Scholar]
  22. Hayashi, M., Hirai, K. & Unemoto, T. ( 1995; ). Sequencing and the alignment of structural genes in the nqr operon encoding the Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 363, 75–77.[CrossRef]
    [Google Scholar]
  23. Kennedy, C., Gamal, R., Hummprey, R., Ramos, J., Brigle, K. & Dean, D. ( 1986; ). The nifH, nifM, and nifN genes of Azotobacter vinelandii: characterization by Tn5 mutagenesis and isolation from pLARF1 gene bank. Mol Gen Genet 205, 318–325.[CrossRef]
    [Google Scholar]
  24. Martínez-Salazar, J. M., Moreno, S., Nájera, R., Boucher, J. C., Espín, G., Soberón-Chávez, G. & Deretic, V. ( 1996; ). Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 178, 1800–1808.
    [Google Scholar]
  25. Mejía-Ruiz, H., Guzmán, J., Moreno, S., Soberón-Chávez, G. & Espín, G. ( 1997a; ). The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter. Gene 199, 271–277.[CrossRef]
    [Google Scholar]
  26. Mejía-Ruiz, H., Moreno, S., Guzmán, J., Nájera, R., León, R., Soberón-Chávez, G. & Espín, G. ( 1997b; ). Isolation and characterization of an Azotobacter vinelandii algK mutant. FEMS Microbiol Lett 156, 101–106.[CrossRef]
    [Google Scholar]
  27. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Sping Harbor, NY: Cold Spring Harbor Laboratory.
  28. Nakayama, Y., Hayashi, M. & Unemoto, T. ( 1998; ). Identification of six subunits constituting Na+-translocating NADH : quinone reductase from the marine Vibrio alginolyticus. FEBS Lett 422, 240–242.[CrossRef]
    [Google Scholar]
  29. Núñez, C., Moreno, S., Soberón-Chávez, G. & Espín, G. ( 1999; ). The Azotobacter vinelandii response regulator AlgR is essential for cyst formation. J Bacteriol 181, 141–148.
    [Google Scholar]
  30. Núñez, C., León, R., Guzmán, J., Espín, G. & Soberón-Chávez, G. ( 2000a; ). Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol 182, 6550–6556.[CrossRef]
    [Google Scholar]
  31. Núñez, C., Moreno, S., Cárdenas, L., Soberón-Chávez, G. & Espín, G. ( 2000b; ). Inactivation of the ampDE operon increases transcription of algD and affects morphology and encystment of Azotobacter vinelandii. J Bacteriol 182, 4829–4835.[CrossRef]
    [Google Scholar]
  32. Padan, E., Venturi, M., Gerchman, Y. & Dover, N. ( 2001; ). Na+/H+ antiporters. Biochim Biophys Acta 1505, 144–157.[CrossRef]
    [Google Scholar]
  33. Page, W. J. & von Tigerstrom, M. ( 1978; ). Induction of transformation competence in Azotobacter vinelandii iron-limited cultures. Can J Microbiol 24, 1590–1594.[CrossRef]
    [Google Scholar]
  34. Rehm, B. H. & Valla, S. ( 1997; ). Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48, 281–288.[CrossRef]
    [Google Scholar]
  35. Remminghorst, U. & Rehm, B. H. ( 2006; ). Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28, 1701–1712.[CrossRef]
    [Google Scholar]
  36. Rich, P. R., Meunier, B. & Ward, F. B. ( 1995; ). Predicted structure and possible ionmotive mechanism of the sodium-linked NADH : ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 375, 5–10.[CrossRef]
    [Google Scholar]
  37. Sadoff, H. L. ( 1975; ). Encystment and germination in Azotobacter vinelandii. Bacteriol Rev 39, 516–539.
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Schurr, M. J., Yu, H., Martínez-Salazar, J. M., Boucher, J. C. & Deretic, V. ( 1996; ). Control of AlgU, a member of the σ E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 178, 4997–5004.
    [Google Scholar]
  40. Segura, D. & Espin, G. ( 1998; ). Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-β-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol 180, 4790–4798.
    [Google Scholar]
  41. Segura, D., Guzmán, J. & Espín, G. ( 2003; ). Azotobacter vinelandii mutants that overproduce poly-β-hydroxybutyrate or alginate. Appl Microbiol Biotechnol 63, 159–163.[CrossRef]
    [Google Scholar]
  42. Skulachev, V. P. ( 1989; ). The sodium cycle: a novel type of bacterial energetics. J Bioenerg Biomembr 21, 635–647.[CrossRef]
    [Google Scholar]
  43. Tokuda, H. & Unemoto, T. ( 1982; ). Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus. J Biol Chem 257, 10007–10014.
    [Google Scholar]
  44. Wilson, K. J., Sessitsch, A., Corbo, J. C., Giller, K. E., Akkermans, A. D. & Jefferson, R. A. ( 1995; ). β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology 141, 1691–1705.[CrossRef]
    [Google Scholar]
  45. Yorimitsu, T. & Homma, M. ( 2001; ). Na+-driven flagellar motor of Vibrio. Biochim Biophys Acta 1505, 82–93.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022533-0
Loading
/content/journal/micro/10.1099/mic.0.022533-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error