1887

Abstract

is a nitrogen-fixing soil bacterium that produces the exopolysaccharide alginate. In this report we describe the isolation and characterization of strain GG4, which carries an  : : Tn mutation resulting in alginate overproduction. The gene encodes a subunit of the Na-translocating NADH : ubiquinone oxidoreductase (Na-NQR). As expected, Na-NQR activity was abolished in mutant GG4. When this strain was complemented with the genes this activity was restored and alginate production was reduced to wild-type levels. Na-NQR may be the main sodium pump of under the conditions tested (∼2 mM Na) since no Na/H-antiporter activity was detected. Collectively our results indicate that in the lack of Na-NQR activity caused the absence of a transmembrane Na gradient and an increase in alginate production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022533-0
2009-01-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/249.html?itemId=/content/journal/micro/10.1099/mic.0.022533-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F., Shokolenko I. N., Croughan T. P.. 1995; New mini-Tn 5 derivatives for insertion mutagenesis and genetic engineering in gram-negative bacteria. Can J Microbiol41:1053–1055
    [Google Scholar]
  2. Barquera B., Hellwig P., Zhou W., Morgan J. E., Häse C. C., Gosink K. K., Nilges M., Bruesehoff P. J., Roth A.. other authors 2002; Purification and characterization of the recombinant Na+-translocating NADH : quinone oxidoreductase from Vibrio cholerae. Biochemistry41:3781–3789
    [Google Scholar]
  3. Bertsova Y. V., Bogachev A. V.. 2002; Operation of the cbb3-type terminal oxidase in Azotobacter vinelandii. Biochemistry (Mosc67:622–626
    [Google Scholar]
  4. Bertsova Y. V., Bogachev A. V.. 2004; The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. FEBS Lett563:207–212
    [Google Scholar]
  5. Bertsova Y. V., Bogachev A. V., Skulachev V. P.. 1998; Two NADH : ubiquinone oxidoreductases of Azotobacter vinelandii and their role in the respiratory protection. Biochim Biophys Acta 1363;125–133
    [Google Scholar]
  6. Bertsova Y. V., Bogachev A. V., Skulachev V. P.. 2001; Noncoupled NADH : ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol183:6869–6874
    [Google Scholar]
  7. Bogachev A. V., Bertsova Y. V., Barquera B., Verkhovsky M. I.. 2001; Sodium-dependent steps in the redox reactions of the Na+-motive NADH : quinone oxidoreductase from Vibrio harveyi. Biochemistry40:7318–7323
    [Google Scholar]
  8. Bogachev A. V., Bertsova Y. V., Ruuge E. K., Wikstrom M., Verkhovsky M. I.. 2002; Kinetics of the spectral changes during reduction of the Na+-motive NADH : quinone oxidoreductase from Vibrio harveyi. Biochim Biophys Acta 1556:113–120
    [Google Scholar]
  9. Campos M., Martinez-Salazar J. M., Lloret L., Moreno S., Núñez C., Espín G., Soberon-Chávez G.. 1996; Characterization of the gene coding for GDP-mannose dehydrogenase ( algD) from Azotobacter vinelandii. J Bacteriol178:1793–1799
    [Google Scholar]
  10. Castañeda M., Guzmán J., Moreno S., Espín G.. 2000; The GacS sensor kinase regulates alginate and poly- β-hydroxybutyrate production in Azotobacter vinelandii. J Bacteriol182:2624–2628
    [Google Scholar]
  11. Castañeda M., Sanchez J., Moreno S., Núñez C., Espín G.. 2001; The global regulators GacA and σ S form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol183:6787–6793
    [Google Scholar]
  12. Degli Esposti M., Ghelli A., Ratta M., Cortes D., Estornell E.. 1994; Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (complex I. Biochem J301:161–167
    [Google Scholar]
  13. Dibrov P., Dibrov E., Pierce G. N., Galperin M. Y.. 2004; Salt in the wound: a possible role of Na+ gradient in chlamydial infection. J Mol Microbiol Biotechnol8:1–6
    [Google Scholar]
  14. Dibrov P., Rimon A., Dzioba J., Winogrodzki A., Shalitin Y., Padan E.. 2005; 2-Aminoperimidine, a specific inhibitor of bacterial NhaA Na+/H+ antiporters. FEBS Lett579:373–378
    [Google Scholar]
  15. Duffy E. B., Barquera B.. 2006; Membrane topology mapping of the Na+-pumping NADH : quinone oxidoreductase from Vibrio cholerae by PhoA-green fluorescent protein fusion analysis. J Bacteriol188:8343–8351
    [Google Scholar]
  16. Fadeeva M. S., Núñez C., Bertsova Y. V., Espín G., Bogachev A. V.. 2008; Catalytic properties of Na+-translocating NADH : quinone oxidoreductases from Vibrio harveyi, Klebsiella pneumoniae, and Azotobacter vinelandii. FEMS Microbiol Lett279:116–123
    [Google Scholar]
  17. Gaona G., Núñez C., Goldberg J. B., Linford A. S., Nájera R., Castañeda M., Guzmán J., Espín G., Soberón-Chávez G.. 2004; Characterization of the Azotobacter vinelandii algC gene involved in alginate and lipopolysaccharide production. FEMS Microbiol Lett238:199–206
    [Google Scholar]
  18. Green G. N., Kranz R. G., Lorence R. M., Gennis R. B.. 1984; Identification of subunit I as the cytochrome b 558 component of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem259:7994–7997
    [Google Scholar]
  19. Häse C. C., Barquera B.. 2001; Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 1505;169–178
    [Google Scholar]
  20. Häse C. C., Mekalanos J. J.. 1999; Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A96:3183–3187
    [Google Scholar]
  21. Häse C. C., Fedorova N. D., Galperin M. Y., Dibrov P. A.. 2001; Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev65:353–370
    [Google Scholar]
  22. Hayashi M., Hirai K., Unemoto T.. 1995; Sequencing and the alignment of structural genes in the nqr operon encoding the Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett363:75–77
    [Google Scholar]
  23. Kennedy C., Gamal R., Hummprey R., Ramos J., Brigle K., Dean D.. 1986; The nifH, nifM, and nifN genes of Azotobacter vinelandii: characterization by Tn5 mutagenesis and isolation from pLARF1 gene bank. Mol Gen Genet205:318–325
    [Google Scholar]
  24. Martínez-Salazar J. M., Moreno S., Nájera R., Boucher J. C., Espín G., Soberón-Chávez G., Deretic V.. 1996; Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol178:1800–1808
    [Google Scholar]
  25. Mejía-Ruiz H., Guzmán J., Moreno S., Soberón-Chávez G., Espín G.. 1997a; The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter. Gene199:271–277
    [Google Scholar]
  26. Mejía-Ruiz H., Moreno S., Guzmán J., Nájera R., León R., Soberón-Chávez G., Espín G.. 1997b; Isolation and characterization of an Azotobacter vinelandii algK mutant. FEMS Microbiol Lett156:101–106
    [Google Scholar]
  27. Miller J. H.. 1972; Experiments in Molecular Genetics. Cold Sping Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Nakayama Y., Hayashi M., Unemoto T.. 1998; Identification of six subunits constituting Na+-translocating NADH : quinone reductase from the marine Vibrio alginolyticus. FEBS Lett422:240–242
    [Google Scholar]
  29. Núñez C., Moreno S., Soberón-Chávez G., Espín G.. 1999; The Azotobacter vinelandii response regulator AlgR is essential for cyst formation. J Bacteriol181:141–148
    [Google Scholar]
  30. Núñez C., León R., Guzmán J., Espín G., Soberón-Chávez G.. 2000a; Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol182:6550–6556
    [Google Scholar]
  31. Núñez C., Moreno S., Cárdenas L., Soberón-Chávez $, Espín G.. 2000b; Inactivation of the ampDE operon increases transcription of algD and affects morphology and encystment of Azotobacter vinelandii. J Bacteriol182:4829–4835
    [Google Scholar]
  32. Padan E., Venturi M., Gerchman Y., Dover N.. 2001; Na+/H+ antiporters. Biochim Biophys Acta 1505;144–157
    [Google Scholar]
  33. Page W. J., von Tigerstrom M.. 1978; Induction of transformation competence in Azotobacter vinelandii iron-limited cultures. Can J Microbiol24:1590–1594
    [Google Scholar]
  34. Rehm B. H., Valla S.. 1997; Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol48:281–288
    [Google Scholar]
  35. Remminghorst U., Rehm B. H.. 2006; Bacterial alginates: from biosynthesis to applications. Biotechnol Lett28:1701–1712
    [Google Scholar]
  36. Rich P. R., Meunier B., Ward F. B.. 1995; Predicted structure and possible ionmotive mechanism of the sodium-linked NADH : ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett375:5–10
    [Google Scholar]
  37. Sadoff H. L.. 1975; Encystment and germination in Azotobacter vinelandii. Bacteriol Rev39:516–539
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: A Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schurr M. J., Yu H., Martínez-Salazar J. M., Boucher J. C., Deretic V.. 1996; Control of AlgU, a member of the σ E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol178:4997–5004
    [Google Scholar]
  40. Segura D., Espin G.. 1998; Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly- β-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol180:4790–4798
    [Google Scholar]
  41. Segura D., Guzmán J., Espín G.. 2003; Azotobacter vinelandii mutants that overproduce poly- β-hydroxybutyrate or alginate. Appl Microbiol Biotechnol63:159–163
    [Google Scholar]
  42. Skulachev V. P.. 1989; The sodium cycle: a novel type of bacterial energetics. J Bioenerg Biomembr21:635–647
    [Google Scholar]
  43. Tokuda H., Unemoto T.. 1982; Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus. J Biol Chem257:10007–10014
    [Google Scholar]
  44. Wilson K. J., Sessitsch A., Corbo J. C., Giller K. E., Akkermans A. D., Jefferson R. A.. 1995; β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology141:1691–1705
    [Google Scholar]
  45. Yorimitsu T., Homma M.. 2001; Na+-driven flagellar motor of Vibrio. Biochim Biophys Acta 1505;82–93
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022533-0
Loading
/content/journal/micro/10.1099/mic.0.022533-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error