1887

Abstract

is a prevalent cause of food-borne diarrhoeal illness in humans. Understanding of the physiological and metabolic capabilities of the organism is limited. We report a detailed analysis of the growth cycle in batch culture. Combined transcriptomic, phenotypic and metabolic analysis demonstrates a highly dynamic ‘stationary phase’, characterized by a peak in motility, numerous gene expression changes and substrate switching, despite transcript changes that indicate a metabolic downshift upon the onset of stationary phase. Video tracking of bacterial motility identifies peak activity during stationary phase. Amino acid analysis of culture supernatants shows a preferential order of amino acid utilization. Proton NMR (H-NMR) highlights an acetate switch mechanism whereby bacteria change from acetate excretion to acetate uptake, most probably in response to depletion of other substrates. Acetate production requires () and (), although the homologue () is not required. Insertion mutants in and maintain viability less well during the stationary and decline phases of the growth cycle than wild-type , suggesting that these genes, and the acetate pathway, are important for survival.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021790-0
2009-01-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/80.html?itemId=/content/journal/micro/10.1099/mic.0.021790-0&mimeType=html&fmt=ahah

References

  1. Altman D. G.. 1991; Practical Statistics for Medical Research London: Chapman & Hall;
    [Google Scholar]
  2. Atack J. M., Harvey P., Jones M. A., Kelly D. J.. 2008; The Campylobacter jejuni thiol peroxidases Tpx and Bcp both contribute to aerotolerance and peroxide-mediated stress resistance but have distinct substrate specificities. J Bacteriol190:5279–5290
    [Google Scholar]
  3. Baillon M. L., van Vliet A. H., Ketley J. M., Constantinidou C., Penn C. W.. 1999; An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol181:4798–4804
    [Google Scholar]
  4. Benjamini Y., Hochberg Y.. 1995; Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodological57:289–300
    [Google Scholar]
  5. Black R. E., Levine M. M., Clements M. L., Hughes T. P., Blaser M. J.. 1988; Experimental Campylobacter jejuni infection in humans. J Infect Dis157:472–479
    [Google Scholar]
  6. Brazma A., Parkinson H., Sarkans U., Shojatalab M., Vilo J., Abeygunawardena N., Holloway E., Kapushesky M., Kemmeren P.. other authors 2003; ArrayExpress – a public repository for microarray gene expression data at the EBI. Nucleic Acids Res31:68–71
    [Google Scholar]
  7. Cairney J., Higgins C. F., Booth I. R.. 1984; Proline uptake through the major transport system of Salmonella typhimurium is coupled to sodium ions. J Bacteriol160:22–27
    [Google Scholar]
  8. Caldwell M. B., Guerry P., Lee E. C., Burans J. P., Walker R. I.. 1985; Reversible expression of flagella in Campylobacter jejuni. Infect Immun50:941–943
    [Google Scholar]
  9. Carrillo C. D., Taboada E., Nash J. H., Lanthier P., Kelly J., Lau P. C., Verhulp R., Mykytczuk O., Sy J.. other authors 2004; Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J Biol Chem279:20327–20338
    [Google Scholar]
  10. Chang D. E., Shin S., Rhee J. S., Pan J. G.. 1999; Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol181:6656–6663
    [Google Scholar]
  11. Corcoran A. T., Moran A. P.. 2007; Influence of growth conditions on diverse polysaccharide production by Campylobacter jejuni. FEMS Immunol Med Microbiol49:124–132
    [Google Scholar]
  12. Darnton N., Turner L., Breuer K., Berg H. C.. 2004; Moving fluid with bacterial carpets. Biophys J86:1863–1870
    [Google Scholar]
  13. Del Recio Leon-Kempis M., Guccione E., Mulholland F., Williamson M. P., Kelly D. J.. 2006; The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. Mol Microbiol60:1262–1275
    [Google Scholar]
  14. Dukan S., Nystrom T.. 1998; Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev12:3431–3441
    [Google Scholar]
  15. Dukan S., Nystrom T.. 1999; Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem274:26027–26032
    [Google Scholar]
  16. Ernst J., Bar-Joseph Z.. 2006; STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics7:191
    [Google Scholar]
  17. Ernst J., Nau G. J., Bar-Joseph Z.. 2005; Clustering short time series gene expression data. Bioinformatics21 :Suppl. 1i159–i168
    [Google Scholar]
  18. Fredriksson A., Ballesteros M., Dukan S., Nystrom T.. 2005; Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol187:4207–4213
    [Google Scholar]
  19. Gaynor E. C., Cawthraw S., Manning G., MacKichan J. K., Falkow S., Newell D. G.. 2004; The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol186:503–517
    [Google Scholar]
  20. Gaynor E. C., Wells D. H., MacKichan J. K., Falkow S.. 2005; The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol56:8–27
    [Google Scholar]
  21. Gillespie I. A., O'Brien S. J., Frost J. A., Adak G. K., Horby P., Swan A. V., Painter M. J., Neal K. R.. 2002; A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerg Infect Dis8:937–942
    [Google Scholar]
  22. Grant A. J., Coward C., Jones M. A., Woodall C. A., Barrow P. A., Maskell D. J.. 2005; Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl Environ Microbiol71:8031–8041
    [Google Scholar]
  23. Guccione E., Del Rocio Leon-Kempis M., Pearson B. M., Hitchin E., Mulholland F., van Diemen P. M., Stevens M. P., Kelly D. J.. 2008; Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol Microbiol69:77–93
    [Google Scholar]
  24. Guerry P.. 2007; Campylobacter flagella: not just for motility. Trends Microbiol15:456–461
    [Google Scholar]
  25. Guerry P., Ewing C. P., Schirm M., Lorenzo M., Kelly J., Pattarini D., Majam G., Thibault P., Logan S.. 2006; Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol60:299–311
    [Google Scholar]
  26. Hazeleger W. C., Janse J. D., Koenraad P. M., Beumer R. R., Rombouts F. M., Abee T.. 1995; Temperature-dependent membrane fatty acid and cell physiology changes in coccoid forms of Campylobacter jejuni. Appl Environ Microbiol61:2713–2719
    [Google Scholar]
  27. He Y., Frye J. G., Strobaugh T. P., Chen C. Y.. 2008; Analysis of AI-2/LuxS-dependent transcription in Campylobacter jejuni strain 81–176. Foodborne Pathog Dis5:399–415
    [Google Scholar]
  28. Hendrixson D. R., DiRita V. J.. 2003; Transcription of σ 54-dependent but not σ 28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol50:687–702
    [Google Scholar]
  29. Jaffe J. D., Miyata M., Berg H. C.. 2004; Energetics of gliding motility in Mycoplasma mobile. J Bacteriol186:4254–4261
    [Google Scholar]
  30. Jangannathan A., Penn C.. 2005; Motility. In Campylobacter: Molecular and Cellular Biology pp331–347 Edited by Ketley J. M., Konkel M. E.. Wymondham, Norfolk, UK: Horizon Bioscience;
    [Google Scholar]
  31. Jenkins D. E., Auger E. A., Matin A.. 1991; Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. J Bacteriol173:1992–1996
    [Google Scholar]
  32. Jones M. A., Marston K. L., Woodall C. A., Maskell D. J., Linton D., Karlyshev A. V., Dorrell N., Wren B. W., Barrow P. A.. 2004; Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect Immun72:3769–3776
    [Google Scholar]
  33. Joshua G. W., Guthrie-Irons C., Karlyshev A. V., Wren B. W.. 2006; Biofilm formation in Campylobacter jejuni. Microbiology152:387–396
    [Google Scholar]
  34. Kalmokoff M., Lanthier P., Tremblay T. L., Foss M., Lau P. C., Sanders G., Austin J., Kelly J., Szymanski C. M.. 2006; Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol188:4312–4320
    [Google Scholar]
  35. Kamal N., Dorrell N., Jagannathan A., Turner S. M., Constantinidou C., Studholme D. J., Marsden G., Hinds J., Laing K. G.. other authors 2007; Deletion of a previously uncharacterized flagellar-hook-length control gene fliK modulates the σ 54-dependent regulon in Campylobacter jejuni. Microbiology153:3099–3111
    [Google Scholar]
  36. Karim Q. N., Logan R. P., Puels J., Karnholz A., Worku M. L.. 1998; Measurement of motility of Helicobacter pylori, Campylobacter jejuni, and Escherichia coli by real time computer tracking using the Hobson BacTracker. J Clin Pathol51:623–628
    [Google Scholar]
  37. Karlyshev A. V., Linton D., Gregson N. A., Wren B. W.. 2002; A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology148:473–480
    [Google Scholar]
  38. Kelly D. J.. 2001; The physiology and metabolism of Campylobacter jejuni and Helicobacter pylori. Symp Ser Soc Appl Microbiol30:16S–24S
    [Google Scholar]
  39. Kelly D. J.. 2005; Metabolism, electron transport and bioenergetics of Campylobacter jejuni: implications for understanding life in the gut and survival in the environment. In Campylobacter: Molecular and Cellular Biology pp275–292 Edited by Ketley J. M., Konkel M. E.. Wymondham, Norfolk, UK: Horizon Bioscience;
    [Google Scholar]
  40. Kelly A. F., Park S. F., Bovill R., Mackey B. M.. 2001; Survival of Campylobacter jejuni during stationary phase: evidence for the absence of a phenotypic stationary-phase response. Appl Environ Microbiol67:2248–2254
    [Google Scholar]
  41. Kiggins E. M., Plastridge W. N.. 1958; Some metabolic activities of Vibrio fetus of bovine origin. J Bacteriol75:205–208
    [Google Scholar]
  42. Klanĉnik A., Botteldoorn L., Herman L., Možina S. S.. 2006; Survival and stress induced expression of groEL and rpoD of Campylobacter jejuni from different growth phases. Int J Food Microbiol112:200–207
    [Google Scholar]
  43. Konkel M. E., Klena J. D., Rivera-Amill V., Monteville M. R., Biswas D., Raphael B., Mickelson J.. 2004; Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol186:3296–3303
    [Google Scholar]
  44. Leach S., Harvey P., Wali R.. 1997; Changes with growth rate in the membrane lipid composition of and amino acid utilization by continuous cultures of Campylobacter jejuni. J Appl Microbiol82:631–640
    [Google Scholar]
  45. Martinez-Rodriguez A., Kelly A. F., Park S. F., Mackey B. M.. 2004; Emergence of variants with altered survival properties in stationary phase cultures of Campylobacter jejuni. Int J Food Microbiol90:321–329
    [Google Scholar]
  46. Mendz G. L., Ball G. E., Meek D. J.. 1997; Pyruvate metabolism in Campylobacter spp. Biochim Biophys Acta 1334;291–302
    [Google Scholar]
  47. Mohammed K. A., Miles R. J., Halablab M. A.. 2005; Simple method to grow enteric campylobacters in unsupplemented liquid medium without the need for microaerophilic kits. J Microbiol Methods61:273–276
    [Google Scholar]
  48. Morooka T., Umeda A., Amako K.. 1985; Motility as an intestinal colonization factor for Campylobacter jejuni. J Gen Microbiol131:1973–1980
    [Google Scholar]
  49. Murphy C., Carroll C., Jordan K. N.. 2003; Induction of an adaptive tolerance response in the foodborne pathogen, Campylobacter jejuni. FEMS Microbiol Lett223:89–93
    [Google Scholar]
  50. Murphy C., Carroll C., Jordan K. N.. 2005; The effect of different media on the survival and induction of stress responses by Campylobacter jejuni. J Microbiol Methods62:161–166
    [Google Scholar]
  51. Nachamkin I., Yang X. H., Stern N. J.. 1993; Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol59:1269–1273
    [Google Scholar]
  52. Nachamkin I., Allos B. M., Ho T. W.. 2000; Campylobacter jejuni infection and the association with Guillain–Barré syndrome. In Campylobacter pp155–175 Edited by Nachamkin I., Blaser M. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  53. Nuijten P. J., van den Berg A. J., Formentini I., van der Zeijst B. A., Jacobs A. A.. 2000; DNA rearrangements in the flagellin locus of an flaA mutant of Campylobacter jejuni during colonization of chicken ceca. Infect Immun68:7137–7140
    [Google Scholar]
  54. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T.. other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668
    [Google Scholar]
  55. Petersen L., Larsen T. S., Ussery D. W., On S. L., Krogh A.. 2003; RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a −35 box. J Mol Biol326:1361–1372
    [Google Scholar]
  56. Pfaffl M. W.. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res29:e45
    [Google Scholar]
  57. Pittman M. S., Kelly D. J.. 2005; Electron transport through nitrate and nitrite reductases in Campylobacter jejuni. Biochem Soc Trans33:190–192
    [Google Scholar]
  58. Purdy D., Cawthraw S., Dickinson J. H., Newell D. G., Park S. F.. 1999; Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonization. Appl Environ Microbiol65:2540–2546
    [Google Scholar]
  59. Rollins D. M., Coolbaugh J. C., Walker R. I., Weiss E.. 1983; Biphasic culture system for rapid Campylobacter cultivation. Appl Environ Microbiol45:284–289
    [Google Scholar]
  60. Rozen S., Skaletsky H.. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol132:365–386
    [Google Scholar]
  61. Sellars M. J., Hall S. J., Kelly D. J.. 2002; Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine- N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol184:4187–4196
    [Google Scholar]
  62. Siegenthaler R. K., Christen P.. 2005; The importance of having thermosensor control in the DnaK chaperone system. J Biol Chem280:14395–14401
    [Google Scholar]
  63. Smibert R. M.. 1978; The genus Campylobacter. Annu Rev Microbiol32:673–709
    [Google Scholar]
  64. Smith M. A., Mendz G. L., Jorgensen M. A., Hazell S. L.. 1999; Fumarate metabolism and the microaerophily of Campylobacter species. Int J Biochem Cell Biol31:961–975
    [Google Scholar]
  65. Stintzi A., Marlow D., Palyada K., Naikare H., Panciera R., Whitworth L., Clarke C.. 2005; Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun73:1797–1810
    [Google Scholar]
  66. Tang Y. C., Chang H. C., Roeben A., Wischnewski D., Wischnewski N., Kerner M. J., Hartl F. U., Hayer-Hartl M.. 2006; Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell125:903–914
    [Google Scholar]
  67. Thomas C., Hill D. J., Mabey M.. 1999; Morphological changes of synchronized Campylobacter jejuni populations during growth in single phase liquid culture. Lett Appl Microbiol28:194–198
    [Google Scholar]
  68. Thompson L. J., Merrell D. S., Neilan B. A., Mitchell H., Lee A., Falkow S.. 2003; Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect Immun71:2643–2655
    [Google Scholar]
  69. Townsend J. P.. 2003; Multifactorial experimental design and the transitivity of ratios with spotted DNA microarrays. BMC Genomics4:41
    [Google Scholar]
  70. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F.. 2002; Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol3:RESEARCH0034
    [Google Scholar]
  71. van Vliet A. H., Baillon M. L., Penn C. W., Ketley J. M.. 1999; Campylobacter jejuni contains two Fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol181:6371–6376
    [Google Scholar]
  72. Velayudhan J., Kelly D. J.. 2002; Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology148:685–694
    [Google Scholar]
  73. Velayudhan J., Jones M. A., Barrow P. A., Kelly D. J.. 2004; l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect Immun72:260–268
    [Google Scholar]
  74. Wassenaar T. M., van der Zeijst B. A., Ayling R., Newell D. G.. 1993; Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol139:1171–1175
    [Google Scholar]
  75. Weerakoon D. R., Olson J. W.. 2008; The Campylobacter jejuni NADH : ubiquinone oxidoreductase (complex I) utilizes flavodoxin rather than NADH. J Bacteriol190:915–925
    [Google Scholar]
  76. Wolfe A. J.. 2005; The acetate switch. Microbiol Mol Biol Rev69:12–50
    [Google Scholar]
  77. Woodall C. A., Jones M. A., Barrow P. A., Hinds J., Marsden G. L., Kelly D. J., Dorrell N., Wren B. W., Maskell D. J.. 2005; Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun73:5278–5285
    [Google Scholar]
  78. Wu Y. L., Lee L. H., Rollins D. M., Ching W. M.. 1994; Heat shock- and alkaline pH-induced proteins of Campylobacter jejuni: characterization and immunological properties. Infect Immun62:4256–4260
    [Google Scholar]
  79. Young K. T., Davis L. M., Dirita V. J.. 2007; Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol5:665–679
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021790-0
Loading
/content/journal/micro/10.1099/mic.0.021790-0
Loading

Data & Media loading...

Supplements

Supplementary File 1

Supplementary File 2

Supplementary File 3

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error