1887

Abstract

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/X011054/1)
    • Principle Award Recipient: NathalieJuge
  • Biotechnology and Biological Sciences Research Council (Award BB/X011011/1)
    • Principle Award Recipient: NathalieJuge
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001448
2024-03-15
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/3/mic001448.html?itemId=/content/journal/micro/10.1099/mic.0.001448&mimeType=html&fmt=ahah

References

  1. Lewis AL, Chen X, Schnaar RL, Varki A. Sialic acids and other nonulosonic acids. In Varki A, Cummings RD, Esko JD. eds Essentials of Glycobiology [Internet]. 4th edition Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022 [View Article]
    [Google Scholar]
  2. Varki A. Sialic acids in human health and disease. Trends Mol Med 2008; 14:351–360 [View Article] [PubMed]
    [Google Scholar]
  3. Angata T, Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 2002; 102:439–469 [View Article] [PubMed]
    [Google Scholar]
  4. Bell A, Severi E, Owen CD, Latousakis D, Juge N. Biochemical and structural basis of sialic acid utilization by gut microbes. J Biol Chem 2023; 299:102989 [View Article] [PubMed]
    [Google Scholar]
  5. Severi E, Hood DW, Thomas GH. Sialic acid utilization by bacterial pathogens. Microbiology 2007; 153:2817–2822 [View Article] [PubMed]
    [Google Scholar]
  6. Han Z, Thuy-Boun PS, Pfeiffer W, Vartabedian VF, Torkamani A et al. Identification of an N-acetylneuraminic acid-presenting bacteria isolated from a healthy human microbiome. SSRN Journal 2020 [View Article]
    [Google Scholar]
  7. Bell A, Brunt J, Crost E, Vaux L, Nepravishta R et al. Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Nat Microbiol 2019; 4:2393–2404 [View Article] [PubMed]
    [Google Scholar]
  8. Lubin J-B, Chowdhury N, Boyd EF. McDonald Host-derived sialic acids are an important nutrient source required for optimal bacterial fitness In vivo. mBio 2016; 7:e02237-15 [View Article] [PubMed]
    [Google Scholar]
  9. Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 2022; 50:D571–D577 [View Article] [PubMed]
    [Google Scholar]
  10. Juge N, Tailford L, Owen CD. Sialidases from gut bacteria: a mini-review. Biochem Soc Trans 2016; 44:166–175 [View Article] [PubMed]
    [Google Scholar]
  11. Xu G, Kiefel MJ, Wilson JC, Andrew PW, Oggioni MR et al. Three Streptococcus pneumoniae sialidases: three different products. J Am Chem Soc 2011; 133:1718–1721 [View Article] [PubMed]
    [Google Scholar]
  12. Tailford LE, Owen CD, Walshaw J, Crost EH, Hardy-Goddard J et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat Commun 2015; 6:7624 [View Article] [PubMed]
    [Google Scholar]
  13. Xu G, Potter JA, Russell RJM, Oggioni MR, Andrew PW et al. Crystal structure of the NanB sialidase from Streptococcus pneumoniae. J Mol Biol 2008; 384:436–449 [View Article] [PubMed]
    [Google Scholar]
  14. Owen CD, Lukacik P, Potter JA, Sleator O, Taylor GL et al. Streptococcus pneumoniae NanC. J Biol Chemist 2015; 290:27736–27748 [View Article]
    [Google Scholar]
  15. Choi J, Schmukler M, Groisman EA. Degradation of gene silencer is essential for expression of foreign genes and bacterial colonization of the mammalian gut. Proc Natl Acad Sci U S A 2022; 119:e2210239119 [View Article] [PubMed]
    [Google Scholar]
  16. Kentache T, Thabault L, Peracchi A, Frédérick R, Bommer GT et al. The putative Escherichia coli dehydrogenase YjhC metabolises two dehydrated forms of N-acetylneuraminate produced by some sialidases. Biosci Rep 2020; 40:1–15 [View Article] [PubMed]
    [Google Scholar]
  17. Severi E, Rudden M, Bell A, Palmer T, Juge N et al. Multiple evolutionary origins reflect the importance of sialic acid transporters in the colonization potential of bacterial pathogens and commensals. Microb Genom 2021; 7:2021 [View Article] [PubMed]
    [Google Scholar]
  18. Thomas GH. Sialic acid acquisition in bacteria-one substrate, many transporters. Biochem Soc Trans 2016; 44:760–765 [View Article] [PubMed]
    [Google Scholar]
  19. Peter MF, Ruland JA, Depping P, Schneberger N, Severi E et al. Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter. Nat Commun 2022; 13:4471 [View Article] [PubMed]
    [Google Scholar]
  20. Davies JS, Currie MJ, North RA, Scalise M, Wright JD et al. Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter. Nat Commun 2023; 14:1120 [View Article] [PubMed]
    [Google Scholar]
  21. Bell A, Severi E, Lee M, Monaco S, Latousakis D et al. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria. J Biol Chem 2020; 295:13724–13736 [View Article] [PubMed]
    [Google Scholar]
  22. Severi E, Hosie AHF, Hawkhead JA, Thomas GH. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters. FEMS Microbiol Lett 2010; 304:47–54 [View Article] [PubMed]
    [Google Scholar]
  23. Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol 1974; 119:736–747 [View Article] [PubMed]
    [Google Scholar]
  24. Monestier M, Latousakis D, Bell A, Tribolo S, Tailford LE et al. Membrane-enclosed multienzyme (MEME) synthesis of 2,7-anhydro-sialic acid derivatives. Carbohydr Res 2017; 451:110–117 [View Article] [PubMed]
    [Google Scholar]
  25. Kalivoda KA, Steenbergen SM, Vimr ER. Control of the Escherichia coli sialoregulon by transcriptional repressor NanR. J Bacteriol 2013; 195:4689–4701 [View Article] [PubMed]
    [Google Scholar]
  26. Vimr ER, Troy FA. Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol 1985; 164:845–853 [View Article] [PubMed]
    [Google Scholar]
  27. Mulligan C, Leech AP, Kelly DJ, Thomas GH. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. J Biol Chem 2012; 287:3598–3608 [View Article] [PubMed]
    [Google Scholar]
  28. Plumbridge J, Vimr E. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol 1999; 181:47–54 [View Article] [PubMed]
    [Google Scholar]
  29. Veseli IA, Tang C, Pombert J-F. Complete genome sequence of Staphylococcus lutrae ATCC 700373, a potential pathogen isolated from deceased otters. Genome Announc 2017; 5:1–8 [View Article] [PubMed]
    [Google Scholar]
  30. Holm L, Laakso LM. Dali server update. Nucleic Acids Res 2016; 44:W351–5 [View Article] [PubMed]
    [Google Scholar]
  31. Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H et al. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res 2023; 51:D488–D508 [View Article] [PubMed]
    [Google Scholar]
  32. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596:583–589 [View Article] [PubMed]
    [Google Scholar]
  33. Guan L, Hariharan P. X-ray crystallography reveals molecular recognition mechanism for sugar binding in a melibiose transporter MelB. Commun Biol 2021; 4:931 [View Article] [PubMed]
    [Google Scholar]
  34. Markham KJ, Tikhonova EB, Scarpa AC, Hariharan P, Katsube S et al. Complete cysteine-scanning mutagenesis of the Salmonella typhimurium melibiose permease. J Biol Chem 2021; 297:101090 [View Article] [PubMed]
    [Google Scholar]
  35. North RA, Wahlgren WY, Remus DM, Scalise M, Kessans SA et al. The sodium sialic acid symporter from Staphylococcus aureus has altered substrate specificity. Front Chem 2018; 6:233 [View Article] [PubMed]
    [Google Scholar]
  36. Wahlgren WY, Dunevall E, North RA, Paz A, Scalise M et al. Substrate-bound outward-open structure of a NA. Nat Commun 2018; 9:1753
    [Google Scholar]
  37. Garrett SR, Mariano G, Palmer T. Genomic analysis of the progenitor strains of Staphylococcus aureus RN6390. Access Microbiology 2022; 4:1–11 [View Article]
    [Google Scholar]
  38. Bozzola T, Scalise M, Larsson CU, Newton-Vesty MC, Rovegno C et al. Sialic acid derivatives inhibit SiaT transporters and delay bacterial growth. ACS Chem Biol 2022; 17:1890–1900 [View Article] [PubMed]
    [Google Scholar]
  39. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013; 502:96–99 [View Article] [PubMed]
    [Google Scholar]
  40. Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 2020; 11:5104 [View Article] [PubMed]
    [Google Scholar]
  41. Thomas C, Tampé R. Structural and mechanistic principles of ABC transporters. Annu Rev Biochem 2020; 89:605–636 [View Article] [PubMed]
    [Google Scholar]
  42. Drew D, North RA, Nagarathinam K, Tanabe M. Structures and general transport mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289–5335 [View Article] [PubMed]
    [Google Scholar]
  43. Henriquez T, Wirtz L, Su D, Jung H. Prokaryotic solute/sodium symporters: versatile functions and mechanisms of a transporter family. Int J Mol Sci 2021; 22:1–21 [View Article] [PubMed]
    [Google Scholar]
  44. Marion C, Aten AE, Woodiga SA, King SJ. Identification of an ATPase, MsmK, which energizes multiple carbohydrate ABC transporters in Streptococcus pneumoniae. Infect Immun 2011; 79:4193–4200 [View Article] [PubMed]
    [Google Scholar]
  45. McNicholas S, Potterton E, Wilson KS, Noble MEM. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 2011; 67:386–394 [View Article] [PubMed]
    [Google Scholar]
  46. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006 [View Article] [PubMed]
    [Google Scholar]
  47. Kushner SR. Rong Fu Wang Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 1991; 100:195–199 [View Article]
    [Google Scholar]
  48. Mulligan C, Geertsma ER, Severi E, Kelly DJ, Poolman B et al. The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci USA 2009; 106:1778–1783 [View Article]
    [Google Scholar]
  49. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640–6645 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001448
Loading
/content/journal/micro/10.1099/mic.0.001448
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error