1887

Graphical Abstract

Graphical Abstract

Abstract

The biosynthetic machinery for the production of colibactin is encoded by 19 genes () within the pathogenicity island harboured by many of the B2-phylogroup. Colibactin is a potent genotoxic metabolite which causes DNA-damage and which has potential roles in microbial competition and fitness of + bacteria. Colibactin has also been strongly implicated in the development of colorectal cancer. Given the genotoxicity of colibactin and the metabolic cost of its synthesis, the regulatory system governing the cluster is accordingly highly complex, and many of the mechanisms remain to be elucidated. In this review we summarise the current understanding of regulation of colibactin biosynthesis by internal molecular components and how these factors are modulated by signals from the external environment.

Funding
This study was supported by the:
  • Wellcome Trust (Award 218518/Z/19/Z)
    • Principle Award Recipient: SofiaSandalli
  • Biotechnology and Biological Sciences Research Council (Award BB/W015781/1)
    • Principle Award Recipient: AndrewJ Roe
  • Biotechnology and Biological Sciences Research Council (Award BB/W015781/1)
    • Principle Award Recipient: EmilyAddington
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001427
2024-02-05
2024-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/170/2/mic001427.html?itemId=/content/journal/micro/10.1099/mic.0.001427&mimeType=html&fmt=ahah

References

  1. Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 2023; 72:338–344 [View Article] [PubMed]
    [Google Scholar]
  2. Adebayo AS, Agbaje K, Adesina SK, Olajubutu O. Colorectal cancer: disease process, current treatment options, and future perspectives. Pharmaceutics 2023; 15:2620 [View Article] [PubMed]
    [Google Scholar]
  3. Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ et al. Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers 2022; 14:1732 [View Article] [PubMed]
    [Google Scholar]
  4. Zhou RW, Harpaz N, Itzkowitz SH, Parsons RE. Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis 2023; 12:48 [View Article] [PubMed]
    [Google Scholar]
  5. Sobhani I, Amiot A, Le Baleur Y, Levy M, Auriault M-L et al. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease?. Therap Adv Gastroenterol 2013; 6:215–229 [View Article] [PubMed]
    [Google Scholar]
  6. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF et al. The gut microbiome modulates colon tumorigenesis. mBio 2013; 4:e00692-13 [View Article] [PubMed]
    [Google Scholar]
  7. Hibberd AA, Lyra A, Ouwehand AC, Rolny P, Lindegren H et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol 2017; 4:e000145 [View Article] [PubMed]
    [Google Scholar]
  8. Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006; 313:848–851 [View Article] [PubMed]
    [Google Scholar]
  9. Messerer M, Fischer W, Schubert S. Investigation of horizontal gene transfer of pathogenicity islands in Escherichia coli using next-generation sequencing. PLoS One 2017; 12:e0179880 [View Article] [PubMed]
    [Google Scholar]
  10. Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 2013; 8:e56964 [View Article] [PubMed]
    [Google Scholar]
  11. Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 2018; 359:592–597 [View Article] [PubMed]
    [Google Scholar]
  12. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338:120–123 [View Article] [PubMed]
    [Google Scholar]
  13. Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol 2014; 20:6560–6572 [View Article] [PubMed]
    [Google Scholar]
  14. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med 2019; 25:679–689 [View Article] [PubMed]
    [Google Scholar]
  15. Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BAM, Iftekhar A et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med 2020; 26:1063–1069 [View Article] [PubMed]
    [Google Scholar]
  16. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 2020; 580:269–273 [View Article]
    [Google Scholar]
  17. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A 2010; 107:11537–11542 [View Article] [PubMed]
    [Google Scholar]
  18. Secher T, Samba-Louaka A, Oswald E, Nougayrède JP. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS One 2013; 8:e77157 [View Article] [PubMed]
    [Google Scholar]
  19. Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 2014; 63:1932–1942 [View Article] [PubMed]
    [Google Scholar]
  20. Bossuet-Greif N, Vignard J, Taieb F, Mirey G, Dubois D et al. The colibactin genotoxin generates DNA interstrand cross-links in infected cells. mBio 2018; 9:e02393-17 [View Article] [PubMed]
    [Google Scholar]
  21. Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019; 363:eaar7785 [View Article] [PubMed]
    [Google Scholar]
  22. Xue M, Kim CS, Healy AR, Wernke KM, Wang Z et al. Structure elucidation of colibactin and its DNA cross-links. Science 2019; 365:eaax2685 [View Article] [PubMed]
    [Google Scholar]
  23. Wernke KM, Xue M, Tirla A, Kim CS, Crawford JM et al. Structure and bioactivity of colibactin. Bioorg Med Chem Lett 2020; 30:127280 [View Article] [PubMed]
    [Google Scholar]
  24. Iftekhar A, Berger H, Bouznad N, Heuberger J, Boccellato F et al. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat Commun 2021; 12:1003 [View Article] [PubMed]
    [Google Scholar]
  25. Dougherty MW, Valdés-Mas R, Wernke KM, Gharaibeh RZ, Yang Y et al. The microbial genotoxin colibactin exacerbates mismatch repair mutations in colorectal tumors. Neoplasia 2023; 43:100918 [View Article] [PubMed]
    [Google Scholar]
  26. Vizcaino MI, Crawford JM. The colibactin warhead crosslinks DNA. Nature Chem 2015; 7:411–417 [View Article]
    [Google Scholar]
  27. Healy AR, Nikolayevskiy H, Patel JR, Crawford JM, Herzon SB. A mechanistic model for colibactin-induced genotoxicity. J Am Chem Soc 2016; 138:15563–15570 [View Article]
    [Google Scholar]
  28. Tronnet S, Floch P, Lucarelli L, Gaillard D, Martin P et al. The genotoxin colibactin shapes gut microbiota in mice. mSphere 2020; 5:e00589-20 [View Article] [PubMed]
    [Google Scholar]
  29. Chen J, Byun H, Liu R, Jung I-J, Pu Q et al. A commensal-encoded genotoxin drives restriction of Vibrio cholerae colonization and host gut microbiome remodeling. Proc Natl Acad Sci U S A 2022; 119:e2121180119 [View Article] [PubMed]
    [Google Scholar]
  30. Silpe JE, Wong JWH, Owen SV, Baym M, Balskus EP. The bacterial toxin colibactin triggers prophage induction. Nature 2022; 603:315–320 [View Article] [PubMed]
    [Google Scholar]
  31. Wong JJ, Ho FK, Choo PY, Chong KKL, Ho CMB et al. Escherichia coli BarA-UvrY regulates the pks island and kills Staphylococci via the genotoxin colibactin during interspecies competition. PLoS Pathog 2022; 18:e1010766 [View Article]
    [Google Scholar]
  32. Homburg S, Oswald E, Hacker J, Dobrindt U. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol Lett 2007; 275:255–262 [View Article] [PubMed]
    [Google Scholar]
  33. Wallenstein A, Rehm N, Brinkmann M, Selle M, Bossuet-Greif N et al. ClbR is the key transcriptional activator of colibactin gene expression in Escherichia coli. mSphere 2020; 5:e00591-20 [View Article] [PubMed]
    [Google Scholar]
  34. Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G. Colibactin: more than a new bacterial toxin. Toxins 2018; 10:151 [View Article] [PubMed]
    [Google Scholar]
  35. Dougherty MW, Jobin C. Shining a light on colibactin biology. Toxins 2021; 13:346 [View Article] [PubMed]
    [Google Scholar]
  36. Chagneau CV, Payros D, Tang-Fichaux M, Auvray F, Nougayrède JP et al. The pks island: a bacterial Swiss army knife? Colibactin: beyond DNA damage and cancer. Trends Microbiol 2022; 30:1146–1159 [View Article] [PubMed]
    [Google Scholar]
  37. Brotherton CA, Balskus EP. A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity. J Am Chem Soc 2013; 135:3359–3362 [View Article] [PubMed]
    [Google Scholar]
  38. Bian X, Plaza A, Zhang Y, Müller R. Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety. Chem Sci 2015; 6:3154–3160 [View Article] [PubMed]
    [Google Scholar]
  39. Zha L, Jiang Y, Henke MT, Wilson MR, Wang JX et al. Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring. Nat Chem Biol 2017; 13:1063–1065 [View Article] [PubMed]
    [Google Scholar]
  40. Bian X, Fu J, Plaza A, Herrmann J, Pistorius D et al. In vivo evidence for a prodrug activation mechanism during colibactin maturation. Chembiochem 2013; 14:1194–1197 [View Article] [PubMed]
    [Google Scholar]
  41. Zha L, Wilson MR, Brotherton CA, Balskus EP. Characterization of polyketide synthase machinery from the pks island facilitates isolation of a candidate precolibactin. ACS Chem Biol 2016; 11:1287–1295 [View Article] [PubMed]
    [Google Scholar]
  42. Trautman EP, Healy AR, Shine EE, Herzon SB, Crawford JM. Domain-targeted metabolomics delineates the heterocycle assembly steps of colibactin biosynthesis. J Am Chem Soc 2017; 139:4195–4201 [View Article] [PubMed]
    [Google Scholar]
  43. Li Z-R, Li J, Gu J-P, Lai JYH, Duggan BM et al. Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. Nat Chem Biol 2016; 12:773–775 [View Article] [PubMed]
    [Google Scholar]
  44. Guntaka NS, Healy AR, Crawford JM, Herzon SB, Bruner SD. Structure and functional analysis of ClbQ, an unusual intermediate-releasing thioesterase from the colibactin biosynthetic pathway. ACS Chem Biol 2017; 12:2598–2608 [View Article]
    [Google Scholar]
  45. Tripathi P, Shine EE, Healy AR, Kim CS, Herzon SB et al. ClbS is a cyclopropane hydrolase that confers colibactin resistance. J Am Chem Soc 2017; 139:17719–17722 [View Article] [PubMed]
    [Google Scholar]
  46. Jiang Y, Stornetta A, Villalta PW, Wilson MR, Boudreau PD et al. The reactivity of an unusual amidase may explain colibactin’s DNA cross-linking activity. Biochemistry 2019 [View Article]
    [Google Scholar]
  47. Dubois D, Baron O, Cougnoux A, Delmas J, Pradel N et al. ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides. J Biol Chem 2011; 286:35562–35570 [View Article] [PubMed]
    [Google Scholar]
  48. Mousa JJ, Yang Y, Tomkovich S, Shima A, Newsome RC et al. MATE transport of the E. coli-derived genotoxin colibactin. Nat Microbiol 2016; 1:15009 [View Article] [PubMed]
    [Google Scholar]
  49. Putze J, Hennequin C, Nougayrède J-P, Zhang W, Homburg S et al. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 2009; 77:4696–4703 [View Article] [PubMed]
    [Google Scholar]
  50. Garcie C, Tronnet S, Garénaux A, McCarthy AJ, Brachmann AO et al. The bacterial stress-responsive Hsp90 chaperone (HtpG) Is required for the production of the genotoxin colibactin and the siderophore yersiniabactin in Escherichia coli. J Infect Dis 2016; 214:916–924 [View Article] [PubMed]
    [Google Scholar]
  51. Corteggiani M, Bossuet-Greif N, Nougayrède J-P, Byrne D, Ilbert M et al. Uncoupling the Hsp90 and DnaK chaperone activities revealed the in vivo relevance of their collaboration in bacteria. Proc Natl Acad Sci U S A 2022; 119:e2201779119 [View Article] [PubMed]
    [Google Scholar]
  52. Genest O, Hoskins JR, Camberg JL, Doyle SM, Wickner S. Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc Natl Acad Sci U S A 2011; 108:8206–8211 [View Article] [PubMed]
    [Google Scholar]
  53. Vivien E, Megessier S, Pieretti I, Cociancich S, Frutos R et al. Xanthomonas albilineans HtpG is required for biosynthesis of the antibiotic and phytotoxin albicidin. FEMS Microbiol Lett 2005; 251:81–89 [View Article] [PubMed]
    [Google Scholar]
  54. Washio K, Lim SP, Roongsawang N, Morikawa M. Identification and characterization of the genes responsible for the production of the cyclic lipopeptide arthrofactin by Pseudomonas sp. MIS38. Biosci Biotechnol Biochem 2010; 74:992–999 [View Article] [PubMed]
    [Google Scholar]
  55. Rao NN, Gómez-García MR, Kornberg A. Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 2009; 78:605–647 [View Article] [PubMed]
    [Google Scholar]
  56. Tang-Fichaux M, Chagneau CV, Bossuet-Greif N, Nougayrède J-P, Oswald É et al. The polyphosphate kinase of Escherichia coli is required for full production of the genotoxin colibactin. mSphere 2020; 5:e01195-20 [View Article] [PubMed]
    [Google Scholar]
  57. Albi T, Serrano A. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol 2016; 32:27 [View Article] [PubMed]
    [Google Scholar]
  58. Bowlin MQ, Gray MJ. Inorganic polyphosphate in host and microbe biology. Trends Microbiol 2021; 29:1013–1023 [View Article] [PubMed]
    [Google Scholar]
  59. Tronnet S, Garcie C, Rehm N, Dobrindt U, Oswald E et al. Iron homeostasis regulates the genotoxicity of Escherichia coli that produces colibactin. Infect Immun 2016; 84:3358–3368 [View Article] [PubMed]
    [Google Scholar]
  60. Rehm N, Wallenstein A, Keizers M, Homburg S, Magistro G et al. Two polyketides intertwined in complex regulation: posttranscriptional CsrA-mediated control of colibactin and yersiniabactin synthesis in Escherichia coli. mBio 2021; 13:e0381421 [View Article] [PubMed]
    [Google Scholar]
  61. Bossuet N, Guyonnet C, Chagneau CV, Tang-Fichaux M, Penary M et al. Oxygen concentration modulates colibactin production. Gut Microbes 2023; 15:2222437 [View Article] [PubMed]
    [Google Scholar]
  62. Alvarez AF, Rodríguez C, González-Chávez R, Georgellis D. The Escherichia coli two-component signal sensor BarA binds protonated acetate via a conserved hydrophobic-binding pocket. J Biol Chem 2021; 297:101383 [View Article] [PubMed]
    [Google Scholar]
  63. Contreras FU, Camacho MI, Pannuri A, Romeo T, Alvarez AF et al. Spatiotemporal regulation of the BarA/UvrY two-component signaling system. J Biol Chem 2023; 299:104835 [View Article] [PubMed]
    [Google Scholar]
  64. Gonzalez Chavez R, Alvarez AF, Romeo T, Georgellis D. The physiological stimulus for the BarA sensor kinase. J Bacteriol 2010; 192:2009–2012 [View Article]
    [Google Scholar]
  65. Tronnet S, Garcie C, Brachmann AO, Piel J, Oswald E et al. High iron supply inhibits the synthesis of the genotoxin colibactin by pathogenic Escherichia coli through a non-canonical Fur/RyhB-mediated pathway. Pathog Dis 2017; 75: [View Article] [PubMed]
    [Google Scholar]
  66. Martin P, Tronnet S, Garcie C, Oswald E. Interplay between siderophores and colibactin genotoxin in Escherichia coli. IUBMB Life 2017; 69:435–441 [View Article] [PubMed]
    [Google Scholar]
  67. Massé E, Vanderpool CK, Gottesman S. Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 2005; 187:6962–6971 [View Article] [PubMed]
    [Google Scholar]
  68. Salvail H, Lanthier-Bourbonnais P, Sobota JM, Caza M, Benjamin J-AM et al. A small RNA promotes siderophore production through transcriptional and metabolic remodeling. Proc Natl Acad Sci U S A 2010; 107:15223–15228 [View Article] [PubMed]
    [Google Scholar]
  69. Chardalias L, Papaconstantinou I, Gklavas A, Politou M, Theodosopoulos T. Iron deficiency anemia in colorectal cancer patients: is preoperative intravenous iron infusion indicated? A narrative review of the literature. Cancer Diagn Progn 2023; 3:163–168 [View Article] [PubMed]
    [Google Scholar]
  70. Berndt V, Beckstette M, Volk M, Dersch P, Brönstrup M. Metabolome and transcriptome-wide effects of the carbon storage regulator A in enteropathogenic Escherichia coli. Sci Rep 2019; 9:138 [View Article] [PubMed]
    [Google Scholar]
  71. Mirzaei R, Dehkhodaie E, Bouzari B, Rahimi M, Gholestani A et al. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed Pharmacother 2022; 145:112352 [View Article] [PubMed]
    [Google Scholar]
  72. Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol 2015; 309:C350–60 [View Article] [PubMed]
    [Google Scholar]
  73. Brown AN, Anderson MT, Bachman MA, Mobley HLT. The ArcAB two-component system: function in metabolism, redox control, and infection. Microbiol Mol Biol Rev 2022; 86:e0011021 [View Article] [PubMed]
    [Google Scholar]
  74. Crofts AA, Giovanetti SM, Rubin EJ, Poly FM, Gutiérrez RL et al. Enterotoxigenic E. coli virulence gene regulation in human infections. Proc Natl Acad Sci U S A 2018; 115:E8968–E8976 [View Article] [PubMed]
    [Google Scholar]
  75. Eberly AR, Floyd KA, Beebout CJ, Colling SJ, Fitzgerald MJ et al. Biofilm formation by uropathogenic Escherichia coli is favored under oxygen conditions that mimic the bladder environment. Int J Mol Sci 2017; 18:2077 [View Article] [PubMed]
    [Google Scholar]
  76. Marteyn B, West NP, Browning DF, Cole JA, Shaw JG et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 2010; 465:355–358 [View Article] [PubMed]
    [Google Scholar]
  77. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. HP 201583 [View Article]
    [Google Scholar]
  78. Schwartz RS, Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med 2011; 364:656–665 [View Article]
    [Google Scholar]
  79. Melican K, Boekel J, Månsson LE, Sandoval RM, Tanner GA et al. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol 2008; 10:1987–1998 [View Article] [PubMed]
    [Google Scholar]
  80. Schaffer K, Taylor CT. The impact of hypoxia on bacterial infection. FEBS J 2015; 282:2260–2266 [View Article] [PubMed]
    [Google Scholar]
  81. Arthur JC, Gharaibeh RZ, Mühlbauer M, Perez-Chanona E, Uronis JM et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 2014; 5:4724 [View Article] [PubMed]
    [Google Scholar]
  82. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 2013; 339:708–711 [View Article] [PubMed]
    [Google Scholar]
  83. Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host & Microbe 2017; 21:208–219 [View Article]
    [Google Scholar]
  84. Cevallos SA, Lee J-Y, Tiffany CR, Byndloss AJ, Johnston L et al. Increased epithelial oxygenation links colitis to an expansion of tumorigenic bacteria. mBio 2019; 10:e02244-19 [View Article] [PubMed]
    [Google Scholar]
  85. Yang Y, Gharaibeh RZ, Newsome RC, Jobin C. Amending microbiota by targeting intestinal inflammation with TNF blockade attenuates development of colorectal cancer. Nat Cancer 2020; 1:723–734 [View Article] [PubMed]
    [Google Scholar]
  86. Clay SL, Fonseca-Pereira D, Garrett WS. Colorectal cancer: the facts in the case of the microbiota. J Clin Invest 2022; 132:e155101 [View Article] [PubMed]
    [Google Scholar]
  87. Guerra L, Guidi R, Frisan T. Do bacterial genotoxins contribute to chronic inflammation, genomic instability and tumor progression?. FEBS J 2011; 278:4577–4588 [View Article] [PubMed]
    [Google Scholar]
  88. Martin OCB, Bergonzini A, Lopez Chiloeches M, Paparouna E, Butter D et al. Influence of the microenvironment on modulation of the host response by typhoid toxin. Cell Rep 2021; 35:108931 [View Article] [PubMed]
    [Google Scholar]
  89. Zhang S, Fu J, Dogan B, Scherl EJ, Simpson KW. 5-Aminosalicylic acid downregulates the growth and virulence of Escherichia coli associated with IBD and colorectal cancer, and upregulates host anti-inflammatory activity. J Antibiot 2018; 71:950–961 [View Article]
    [Google Scholar]
  90. Tang-Fichaux M, Branchu P, Nougayrède JP, Oswald E. Tackling the threat of cancer due to pathobionts producing colibactin: is mesalamine the magic bullet?. Toxins 2021; 13:897 [View Article] [PubMed]
    [Google Scholar]
  91. Dahl J-U, Gray MJ, Bazopoulou D, Beaufay F, Lempart J et al. The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation. Nat Microbiol 2017; 2:16267 [View Article] [PubMed]
    [Google Scholar]
  92. Cevallos SA, Lee J-Y, Velazquez EM, Foegeding NJ, Shelton CD et al. 5-aminosalicylic acid ameliorates colitis and checks dysbiotic Escherichia coli expansion by activating PPAR-γ signaling in the intestinal epithelium. mBio 2021; 12:e03227-20 [View Article] [PubMed]
    [Google Scholar]
  93. Chagneau CV, Garcie C, Bossuet-Greif N, Tronnet S, Brachmann AO et al. The polyamine spermidine modulates the production of the bacterial genotoxin colibactin. mSphere 2019; 4:e00414-19 [View Article] [PubMed]
    [Google Scholar]
  94. Di Martino ML, Campilongo R, Casalino M, Micheli G, Colonna B et al. Polyamines: emerging players in bacteria-host interactions. Int J Med Microbiol 2013; 303:484–491 [View Article] [PubMed]
    [Google Scholar]
  95. Tofalo R, Cocchi S, Suzzi G. Polyamines and gut microbiota. Front Nutr 2019; 6:16 [View Article] [PubMed]
    [Google Scholar]
  96. Hallam JC, Sandalli S, Floria I, Turner NCA, Tang-Fichaux M et al. D-Serine reduces the expression of the cytopathic genotoxin colibactin. Microb Cell 2023; 10:63–77 [View Article] [PubMed]
    [Google Scholar]
  97. Sadecki PW, Balboa SJ, Lopez LR, Kedziora KM, Arthur JC et al. Evolution of polymyxin resistance regulates colibactin production in Escherichia coli.. ACS Chem Biol 2021; 16:1243–1254 [View Article] [PubMed]
    [Google Scholar]
  98. Oliero M, Calvé A, Fragoso G, Cuisiniere T, Hajjar R et al. Oligosaccharides increase the genotoxic effect of colibactin produced by pks+ Escherichia coli strains. BMC Cancer 2021; 21:172 [View Article] [PubMed]
    [Google Scholar]
  99. Zhang S, Dogan B, Guo C, Herlekar D, Stewart K et al. Short chain fatty acids modulate the growth and virulence of pathosymbiont Escherichia coli and host response. Antibiotics 2020; 9:462 [View Article] [PubMed]
    [Google Scholar]
  100. Zhang Z, Zhang H, Chen T, Shi L, Wang D et al. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Commun Signal 2022; 20:64 [View Article] [PubMed]
    [Google Scholar]
  101. Kaewkod T, Tobe R, Tragoolpua Y, Mihara H. Medicinal plant extracts protect epithelial cells from infection and DNA damage caused by colibactin-producing Escherichia coli, and inhibit the growth of bacteria. J Appl Microbiol 2021; 130:769–785 [View Article] [PubMed]
    [Google Scholar]
  102. Kosari F, Taheri M, Moradi A, Hakimi Alni R, Alikhani MY. Evaluation of cinnamon extract effects on clbB gene expression and biofilm formation in Escherichia coli strains isolated from colon cancer patients. BMC Cancer 2020; 20:267 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001427
Loading
/content/journal/micro/10.1099/mic.0.001427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error