1887

Abstract

The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predominantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread regulation of transporter activity in biology.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/M011151/1)
    • Principle Award Recipient: GavinH. Thomas
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001412
2023-11-10
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/11/mic001412.html?itemId=/content/journal/micro/10.1099/mic.0.001412&mimeType=html&fmt=ahah

References

  1. Chaptal V, Kwon S, Sawaya MR, Guan L, Kaback HR et al. Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition. Proc Natl Acad Sci U S A 2011; 108:9361–9366 [View Article] [PubMed]
    [Google Scholar]
  2. Kaback HR, Wu J. From membrane to molecule to the third amino acid from the left with a membrane transport protein. Q Rev Biophys 1997; 30:333–364 [View Article] [PubMed]
    [Google Scholar]
  3. Severi E, Thomas GH. Antibiotic export: transporters involved in the final step of natural product production. Microbiology 2019; 165:805–818 [View Article] [PubMed]
    [Google Scholar]
  4. Darby EM, Trampari E, Siasat P, Gaya MS, Alav I et al. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280–295 [View Article] [PubMed]
    [Google Scholar]
  5. Elbourne LDH, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res 2017; 45:D320–D324 [View Article] [PubMed]
    [Google Scholar]
  6. Piepenbreier H, Fritz G, Gebhard S. Transporters as information processors in bacterial signalling pathways. Mol Microbiol 2017; 104:1–15 [View Article] [PubMed]
    [Google Scholar]
  7. Lee SJ, Boos W, Bouché JP, Plumbridge J. Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J 2000; 19:5353–5361 [View Article] [PubMed]
    [Google Scholar]
  8. Kornberg HL. The nature and control of carbohydrate uptake by Escherichia coli. J Cell Physiol 1976; 89:545–550
    [Google Scholar]
  9. Kadner RJ. Regulation of methionine transport activity in Escherichia coli. J Bacteriol 1975; 122:110–119 [View Article] [PubMed]
    [Google Scholar]
  10. McGinnis JF, Paigen K. Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization. J Bacteriol 1969; 100:902–913 [View Article] [PubMed]
    [Google Scholar]
  11. Kadaba NS, Kaiser JT, Johnson E, Lee A, Rees DC. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 2008; 321:250–253 [View Article] [PubMed]
    [Google Scholar]
  12. Gerber S, Comellas-Bigler M, Goetz BA, Locher KP. Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 2008; 321:246–250 [View Article] [PubMed]
    [Google Scholar]
  13. Wang B, Dukarevich M, Sun EI, Yen MR, Saier MH. Membrane porters of ATP-binding cassette transport systems are polyphyletic. J Membr Biol 2009; 231:1–10 [View Article] [PubMed]
    [Google Scholar]
  14. Thomas C, Aller SG, Beis K, Carpenter EP, Chang G et al. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett 2020; 594:3767–3775 [View Article] [PubMed]
    [Google Scholar]
  15. Maqbool A, Horler RSP, Muller A, Wilkinson AJ, Wilson KS et al. The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity. Biochem Soc Trans 2015; 43:1011–1017 [View Article] [PubMed]
    [Google Scholar]
  16. Gál J, Szvetnik A, Schnell R, Kálmán M. The metD D-methionine transporter locus of Escherichia coli is an ABC transporter gene cluster. J Bacteriol 2002; 184:4930–4932 [View Article] [PubMed]
    [Google Scholar]
  17. Merlin C, Gardiner G, Durand S, Masters M. The Escherichia coli metD locus encodes an ABC transporter which includes ABC (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol 2002; 184:5513–5517 [View Article] [PubMed]
    [Google Scholar]
  18. Johnson E, Nguyen PT, Yeates TO, Rees DC. Inward facing conformations of the MetNI methionine ABC transporter: implications for the mechanism of transinhibition. Protein Sci 2012; 21:84–96 [View Article] [PubMed]
    [Google Scholar]
  19. Yang JG, Rees DC. The allosteric regulatory mechanism of the Escherichia coli MetNI methionine ATP binding cassette (ABC) transporter. J Biol Chem 2015; 290:9135–9140 [View Article] [PubMed]
    [Google Scholar]
  20. Ranquet C, Ollagnier-de-Choudens S, Loiseau L, Barras F, Fontecave M. Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins. J Biol Chem 2007; 282:30442–30451 [View Article] [PubMed]
    [Google Scholar]
  21. Argüello JM, Raimunda D, Padilla-Benavides T. Mechanisms of copper homeostasis in bacteria. Front Cell Infect Microbiol 2013; 3:73 [View Article] [PubMed]
    [Google Scholar]
  22. Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 2009; 106:8344–8349 [View Article] [PubMed]
    [Google Scholar]
  23. Groisman EA, Hollands K, Kriner MA, Lee E-J, Park S-Y et al. Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet 2013; 47:625–646 [View Article] [PubMed]
    [Google Scholar]
  24. Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. Biometals 2002; 15:203–210 [View Article] [PubMed]
    [Google Scholar]
  25. Snavely MD, Florer JB, Miller CG, Maguire ME. 28 Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 1989; 171:4761–4766 [View Article] [PubMed]
    [Google Scholar]
  26. Lunin VV, Dobrovetsky E, Khutoreskaya G, Zhang R, Joachimiak A et al. Crystal structure of the CorA Mg2+ transporter. Nature 2006; 440:833–837 [View Article] [PubMed]
    [Google Scholar]
  27. Guskov A, Nordin N, Reynaud A, Engman H, Lundbäck A-K et al. Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA. Proc Natl Acad Sci U S A 2012; 109:18459–18464 [View Article] [PubMed]
    [Google Scholar]
  28. Snavely MD, Miller CG, Maguire ME. The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem 1991; 266:815–823 [PubMed]
    [Google Scholar]
  29. Groisman EA, Chan C. Cellular adaptations to cytoplasmic mg 2+ limitation. Annu Rev Microbiol 2021; 75:649–672
    [Google Scholar]
  30. Dyla M, Kjærgaard M, Poulsen H, Nissen P. Structure and mechanism of P-type ATPase Ion pumps. Annu Rev Biochem 2020; 89:583–603 [View Article] [PubMed]
    [Google Scholar]
  31. Subramani S, Perdreau-Dahl H, Morth JP. The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. Elife 2016; 5:e11407 [View Article] [PubMed]
    [Google Scholar]
  32. Froschauer EM, Kolisek M, Dieterich F, Schweigel M, Schweyen RJ. Fluorescence measurements of free [Mg2+] by use of mag-fura 2 in Salmonella enterica. FEMS Microbiol Lett 2004; 237:49–55 [View Article] [PubMed]
    [Google Scholar]
  33. Silver S, Clark D. Magnesium transport in Escherichia coli. J Biol Chem 1971; 246:569–576 [PubMed]
    [Google Scholar]
  34. Cebrián G, Arroyo C, Mañas P, Condón S. Bacterial maximum non-inhibitory and minimum inhibitory concentrations of different water activity depressing solutes. Int J Food Microbiol 2014; 188:67–74 [View Article] [PubMed]
    [Google Scholar]
  35. Armitano J, Redder P, Guimarães VA, Linder P. An essential factor for High Mg2+ tolerance of Staphylococcus aureus. Front Microbiol 2016; 7: [View Article]
    [Google Scholar]
  36. Gibson MM, Bagga DA, Miller CG, Maguire ME. Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system. Mol Microbiol 1991; 5:2753–2762 [View Article] [PubMed]
    [Google Scholar]
  37. Chen YS, Kozlov G, Moeller BE, Rohaim A, Fakih R et al. Crystal structure of an archaeal CorB magnesium transporter. Nat Commun 2021; 12:4028 [View Article] [PubMed]
    [Google Scholar]
  38. Huang Y, Jin F, Funato Y, Xu Z, Zhu W et al. Structural basis for the mg 2+ recognition and regulation of the Corc mg 2+ transporter. Sci Adv 2021; 7:6140 [View Article]
    [Google Scholar]
  39. Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317–364 [View Article] [PubMed]
    [Google Scholar]
  40. Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulimane T. Cation diffusion facilitator family: structure and function. FEBS Lett 2015; 589:1283–1295 [View Article] [PubMed]
    [Google Scholar]
  41. Wei Y, Li H, Fu D. Oligomeric state of the Escherichia coli metal transporter YiiP. J Biol Chem 2004; 279:39251–39259 [View Article] [PubMed]
    [Google Scholar]
  42. Lu M, Fu D. Structure of the zinc transporter YiiP. Science 2007; 317:1746–1748 [View Article] [PubMed]
    [Google Scholar]
  43. Lu M, Chai J, Fu D. Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Mol Biol 2009; 16:1063–1067 [View Article] [PubMed]
    [Google Scholar]
  44. Lopez-Redondo ML, Coudray N, Zhang Z, Alexopoulos J, Stokes DL. Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP. Proc Natl Acad Sci U S A 2018; 115:3042–3047 [View Article] [PubMed]
    [Google Scholar]
  45. Coudray N, Valvo S, Hu M, Lasala R, Kim C et al. Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2013; 110:2140–2145 [View Article] [PubMed]
    [Google Scholar]
  46. Anton A, Weltrowski A, Haney CJ, Franke S, Grass G et al. Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J Bacteriol 2004; 186:7499–7507 [View Article] [PubMed]
    [Google Scholar]
  47. Cherezov V, Höfer N, Szebenyi DME, Kolaj O, Wall JG et al. Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus. Structure 2008; 16:1378–1388 [View Article] [PubMed]
    [Google Scholar]
  48. Zeytuni N, Uebe R, Maes M, Davidov G, Baram M et al. Cation diffusion facilitators transport initiation and regulation is mediated by cation induced conformational changes of the cytoplasmic domain. PLoS One 2014; 9:e92141 [View Article] [PubMed]
    [Google Scholar]
  49. Barber-Zucker S, Hall J, Mangapuram SV, Kass I, Kolusheva S et al. Metal binding to the dynamic cytoplasmic domain of the cation diffusion facilitator (CDF) protein MamM induces a “locked-in” configuration. FEBS J 2019; 286:2193–2215 [View Article] [PubMed]
    [Google Scholar]
  50. Lopez-Redondo M, Fan S, Koide A, Koide S, Beckstein O et al. Zinc binding alters the conformational dynamics and drives the transport cycle of the cation diffusion facilitator YiiP. J Gen Physiol 2021; 153:e202112873 [View Article] [PubMed]
    [Google Scholar]
  51. Bremer E, Krämer R. Responses of microorganisms to osmotic stress. Annu Rev Microbiol 2019; 73:313–334 [View Article] [PubMed]
    [Google Scholar]
  52. Wood JM. Bacterial responses to osmotic challenges. J Gen Physiol 2015; 145:381–388 [View Article] [PubMed]
    [Google Scholar]
  53. Wood JM. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 2011; 65:215–238 [View Article] [PubMed]
    [Google Scholar]
  54. Rübenhagen R, Morbach S, Krämer R. The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K+. EMBO J 2001; 20:5412–5420 [View Article] [PubMed]
    [Google Scholar]
  55. Karasawa A, Swier L, Stuart MCA, Brouwers J, Helms B et al. Physicochemical factors controlling the activity and energy coupling of an ionic strength-gated ATP-binding cassette (ABC) transporter. J Biol Chem 2013; 288:29862–29871 [View Article] [PubMed]
    [Google Scholar]
  56. Mahmood N, Biemans-Oldehinkel E, Patzlaff JS, Schuurman-Wolters GK, Poolman B. Ion specificity and ionic strength dependence of the osmoregulatory ABC transporter OpuA. J Biol Chem 2006; 281:29830–29839 [View Article] [PubMed]
    [Google Scholar]
  57. Culham DE, Henderson J, Crane RA, Wood JM. Osmosensor ProP of Escherichia coli responds to the concentration, chemistry, and molecular size of osmolytes in the proteoliposome lumen. Biochemistry 2003; 42:410–420 [View Article] [PubMed]
    [Google Scholar]
  58. Romantsov T, Stalker L, Culham DE, Wood JM. Cardiolipin controls the osmotic stress response and the subcellular location of transporter ProP in Escherichia coli. J Biol Chem 2008; 283:12314–12323 [View Article] [PubMed]
    [Google Scholar]
  59. van der Heide T, Stuart MC, Poolman B. On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J 2001; 20:7022–7032 [View Article] [PubMed]
    [Google Scholar]
  60. Schiller D, Ott V, Krämer R, Morbach S. Influence of membrane composition on osmosensing by the betaine carrier BetP from Corynebacterium glutamicum. J Biol Chem 2006; 281:7737–7746 [View Article] [PubMed]
    [Google Scholar]
  61. Culham DE, Marom D, Boutin R, Garner J, Ozturk TN et al. Dual role of the C-terminal domain in osmosensing by bacterial osmolyte transporter ProP. Biophys J 2018; 115:2152–2166 [View Article] [PubMed]
    [Google Scholar]
  62. Zoetewey DL, Tripet BP, Kutateladze TG, Overduin MJ, Wood JM et al. Solution structure of the C-terminal antiparallel coiled-coil domain from Escherichia coli osmosensor ProP. J Mol Biol 2003; 334:1063–1076 [View Article] [PubMed]
    [Google Scholar]
  63. Huynh TN, Choi PH, Sureka K, Ledvina HE, Campillo J et al. Cyclic di-AMP targets the cystathionine beta-synthase domain of the osmolyte transporter OpuC. Mol Microbiol 2016; 102:233–243 [View Article] [PubMed]
    [Google Scholar]
  64. Ressl S, Scheltinga AC, Vonrhein C, Ott V, Ziegler C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 2009; 458:47–52 [View Article]
    [Google Scholar]
  65. Biemans-Oldehinkel E, Mahmood N, Poolman B. A sensor for intracellular ionic strength. Proc Natl Acad Sci U S A 2006; 103:10624–10629 [View Article] [PubMed]
    [Google Scholar]
  66. Peter H, Burkovski A, Krämer R. Osmo-sensing by N- and C-terminal extensions of the glycine betaine uptake system BetP of Corynebacterium glutamicum. J Biol Chem 1998; 273:2567–2574 [View Article] [PubMed]
    [Google Scholar]
  67. Ozturk TN, Culham DE, Tempelhagen L, Wood JM, Lamoureux G. Salt-dependent interactions between the C-terminal domain of osmoregulatory transporter ProP of Escherichia coli and the lipid membrane. J Phys Chem B 2020; 124:8209–8220 [View Article] [PubMed]
    [Google Scholar]
  68. Ott V, Koch J, Späte K, Morbach S, Krämer R. Regulatory properties and interaction of the C- and N-terminal domains of BetP, an osmoregulated betaine transporter from Corynebacterium glutamicum. Biochem 2008; 47:12208–12218 [View Article] [PubMed]
    [Google Scholar]
  69. Leone V, Bradshaw RT, Koshy C, Lee PS, Fenollar-Ferrer C et al. Insights into autoregulation of a membrane protein complex by its cytoplasmic domains. Biophys J 2023; 122:577–594 [View Article] [PubMed]
    [Google Scholar]
  70. Sikkema HR, van den Noort M, Rheinberger J, de Boer M, Krepel ST et al. Gating by ionic strength and safety check by cyclic-di-AMP in the ABC transporter OpuA. Sci Adv 2020; 6:7697–7715 [View Article] [PubMed]
    [Google Scholar]
  71. Fuss MF, Wieferig J-P, Corey RA, Hellmich Y, Tascón I et al. Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation. Nat Commun 2023; 14:3683 [View Article] [PubMed]
    [Google Scholar]
  72. Makarewich CA, Olson EN. Mining for micropeptides. Trends Cell Biol 2017; 27:685–696 [View Article] [PubMed]
    [Google Scholar]
  73. Duval M, Cossart P. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr Opin Microbiol 2017; 39:81–88 [View Article] [PubMed]
    [Google Scholar]
  74. Storz G, Wolf YI, Ramamurthi KS. Small proteins can no longer be ignored. Annu Rev Biochem 2014; 83:753–777 [View Article] [PubMed]
    [Google Scholar]
  75. Yadavalli SS, Yuan J, Henkin TM. Bacterial small membrane proteins: the swiss army knife of regulators at the lipid bilayer. J Bacteriol 2022; 204:e0034421 [View Article] [PubMed]
    [Google Scholar]
  76. Khitun A, Ness TJ, Slavoff SA. Small open reading frames and cellular stress responses. Mol Omics 2019; 15:108–116 [View Article] [PubMed]
    [Google Scholar]
  77. Garai P, Blanc-Potard A. Uncovering small membrane proteins in pathogenic bacteria: regulatory functions and therapeutic potential. Mol Microbiol 2020; 114:710–720 [View Article] [PubMed]
    [Google Scholar]
  78. Boulanger EF, Sabag-Daigle A, Thirugnanasambantham P, Gopalan V, Ahmer BMM. Sugar-phosphate toxicities. Microbiol Mol Biol 2021; 85:e0012321 [View Article] [PubMed]
    [Google Scholar]
  79. Wadler CS, Vanderpool CK. A dual function for A bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci U S A 2007; 104:20454–20459 [View Article] [PubMed]
    [Google Scholar]
  80. Maki K, Morita T, Otaka H, Aiba H. A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA. Mol Microbiol 2010; 76:782–792 [View Article] [PubMed]
    [Google Scholar]
  81. Rice JB, Vanderpool CK. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res 2011; 39:3806–3819 [View Article] [PubMed]
    [Google Scholar]
  82. Lloyd CR, Park S, Fei J, Vanderpool CK. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 2017; 199:11 [View Article] [PubMed]
    [Google Scholar]
  83. Yin X, Wu Orr M, Wang H, Hobbs EC, Shabalina SA et al. The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. Mol Microbiol 2019; 111:131–144 [View Article] [PubMed]
    [Google Scholar]
  84. Martin JE, Waters LS, Storz G, Imlay JA. The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. PLoS Genet 2015; 11:e1004977 [View Article] [PubMed]
    [Google Scholar]
  85. Waters LS, Sandoval M, Storz G. The Escherichia coli MntR miniregulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis. J Bacteriol 2011; 193:5887–5897 [View Article] [PubMed]
    [Google Scholar]
  86. Du D, Wang Z, James NR, Voss JE, Klimont E et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature 2014; 509:512–515 [View Article] [PubMed]
    [Google Scholar]
  87. Chorev DS, Baker LA, Wu D, Beilsten-Edmands V, Rouse SL et al. Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science 2018; 362:829–834 [View Article] [PubMed]
    [Google Scholar]
  88. Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II et al. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife 2017; 6:e24905 [View Article] [PubMed]
    [Google Scholar]
  89. Du D, Neuberger A, Orr MW, Newman CE, Hsu P-C et al. Interactions of a bacterial RND transporter with a transmembrane small protein in a lipid environment. Structure 2020; 28:625–634 [View Article] [PubMed]
    [Google Scholar]
  90. Hobbs EC, Yin X, Paul BJ, Astarita JL, Storz G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc Natl Acad Sci U S A 2012; 109:16696–16701 [View Article] [PubMed]
    [Google Scholar]
  91. Törnroth-Horsefield S, Gourdon P, Horsefield R, Brive L, Yamamoto N et al. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Structure 2007; 15:1663–1673 [View Article] [PubMed]
    [Google Scholar]
  92. Cha S, Cho Y-J, Lee JK, Hahn J-S. Regulation of acetate tolerance by small ORF-encoded polypeptides modulating efflux pump specificity in Methylomonas sp. DH-1. Biotechnol Biofuels Bioprod 2023; 16:114 [View Article] [PubMed]
    [Google Scholar]
  93. Chen J, Fruhauf A, Fan C, Ponce J, Ueberheide B et al. Structure of an endogenous mycobacterial MCE lipid transporter. Nature 2023; 620:445–452 [View Article] [PubMed]
    [Google Scholar]
  94. Ito K, Akiyama Y. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 2005; 59:211–231 [View Article] [PubMed]
    [Google Scholar]
  95. Choi E, Lee K-Y, Shin D. The MgtR regulatory peptide negatively controls expression of the MgtA Mg2+ transporter in Salmonella enterica serovar Typhimurium. Biochem Biophys Res Commun 2012; 417:318–323 [View Article] [PubMed]
    [Google Scholar]
  96. Yeom J, Shao Y, Groisman EA. Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter. Proc Natl Acad Sci U S A 2020; 117:20235–20243 [View Article] [PubMed]
    [Google Scholar]
  97. Alix E, Blanc-Potard AB. Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J 2008; 27:546–557 [View Article] [PubMed]
    [Google Scholar]
  98. Yeom J, Pontes MH, Choi J, Groisman EA. A protein that controls the onset of a Salmonella virulence program. EMBO J 2018; 37:14 [View Article] [PubMed]
    [Google Scholar]
  99. Lee EJ, Groisman EA. An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol 2010; 76:1020–1033 [View Article] [PubMed]
    [Google Scholar]
  100. Wang H, Yin X, Wu Orr M, Dambach M, Curtis R et al. Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. Proc Natl Acad Sci U S A 2017; 114:5689–5694 [View Article] [PubMed]
    [Google Scholar]
  101. Cunrath O, Bumann D. Host resistance factor SLC11A1 restricts Salmonella growth through magnesium deprivation. Science 2019; 366:995–999 [View Article] [PubMed]
    [Google Scholar]
  102. Maguire ME. MgtA and MgtB: prokaryotic P-type ATPases that mediate Mg2+ influx. J Bioenerg Biomembr 1992; 24:319–328 [View Article] [PubMed]
    [Google Scholar]
  103. Hung K-W, Tsai J-Y, Juan T-H, Hsu Y-L, Hsiao C-D et al. Crystal structure of the Klebsiella pneumoniae NFeoB/FeoC complex and roles of FeoC in regulation of Fe2+ transport by the bacterial Feo system. J Bacteriol 2012; 194:6518–6526 [View Article] [PubMed]
    [Google Scholar]
  104. Weaver EA, Wyckoff EE, Mey AR, Morrison R, Payne SM. FeoA and FeoC are essential components of the Vibrio cholerae ferrous iron uptake system, and FeoC interacts with FeoB. J Bacteriol 2013; 195:4826–4835 [View Article] [PubMed]
    [Google Scholar]
  105. Kim H, Lee H, Shin D. The FeoC protein leads to high cellular levels of the Fe(II) transporter FeoB by preventing FtsH protease regulation of FeoB in Salmonella enterica. J Bacteriol 2013; 195:3364–3370 [View Article] [PubMed]
    [Google Scholar]
  106. Kim H, Lee H, Shin D. Lon-mediated proteolysis of the FeoC protein prevents Salmonella enterica from accumulating the Fe(II) transporter FeoB under high-oxygen conditions. J Bacteriol 2015; 197:92–98 [View Article] [PubMed]
    [Google Scholar]
  107. Hsueh K-L, Yu L-K, Chen Y-H, Cheng Y-H, Hsieh Y-C et al. FeoC from Klebsiella pneumoniae contains a [4Fe-4S] cluster. J Bacteriol 2013; 195:4726–4734 [View Article] [PubMed]
    [Google Scholar]
  108. Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB et al. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci U S A 2000; 97:14674–14679 [View Article] [PubMed]
    [Google Scholar]
  109. Thomas G, Coutts G, Merrick M. The glnKamtB operon. A conserved gene pair in prokaryotes. Trends Genet 2000; 16:11–14 [View Article] [PubMed]
    [Google Scholar]
  110. Forchhammer K, Lüddecke J. Sensory properties of the PII signalling protein family. FEBS J 2016; 283:425–437 [View Article] [PubMed]
    [Google Scholar]
  111. Blakey D, Leech A, Thomas GH, Coutts G, Findlay K et al. Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem J 2002; 364:527–535 [View Article] [PubMed]
    [Google Scholar]
  112. Coutts G, Thomas G, Blakey D, Merrick M. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 2002; 21:536–545 [View Article] [PubMed]
    [Google Scholar]
  113. Javelle A, Severi E, Thornton J, Merrick M. Ammonium sensing in Escherichia coli. Role of the ammonium transporter AmtB and AmtB-GlnK complex formation. J Biol Chem 2004; 279:8530–8538 [View Article] [PubMed]
    [Google Scholar]
  114. Conroy MJ, Durand A, Lupo D, Li X-D, Bullough PA et al. The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proc Natl Acad Sci U S A 2007; 104:1213–1218 [View Article] [PubMed]
    [Google Scholar]
  115. Gruswitz F, O’Connell J, Stroud RM. Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Proc Natl Acad Sci U S A 2006; 104:42–47 [View Article] [PubMed]
    [Google Scholar]
  116. Watzer B, Spät P, Neumann N, Koch M, Sobotka R et al. The signal transduction protein PII controls ammonium, nitrate and urea uptake in cyanobacteria. Front Microbiol 2019; 10:1428 [View Article] [PubMed]
    [Google Scholar]
  117. Forchhammer K, Tandeau de Marsac N. Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: analysis of in vitro kinase activity. J Bacteriol 1995; 177:5812–5817 [View Article] [PubMed]
    [Google Scholar]
  118. Lee H-M, Flores E, Herrero A, Houmard J, Tandeau de Marsac N. A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Lett 1998; 427:291–295 [View Article] [PubMed]
    [Google Scholar]
  119. Lee HM, Flores E, Forchhammer K, Herrero A, Tandeau De Marsac N. Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-mediated regulation of nitrate and nitrite uptake in the Cyanobacterium synechococcus sp. PCC 7942. Eur J Biochem 2000; 267:591–600 [View Article] [PubMed]
    [Google Scholar]
  120. Kobayashi M, Rodríguez R, Lara C, Omata T. Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the Cyanobacterium synechococcus sp. strain PCC 7942. J Biol Chem 1997; 272:27197–27201 [View Article] [PubMed]
    [Google Scholar]
  121. Kloft N, Forchhammer K. Signal transduction protein PII phosphatase PphA is required for light-dependent control of nitrate utilization in Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:6683–6690 [View Article] [PubMed]
    [Google Scholar]
  122. Liu X-Y, Hou W-T, Wang L, Li B, Chen Y et al. Structures of cyanobacterial bicarbonate transporter SbtA and its complex with PII-like SbtB. Cell Discov 2021; 7:63 [View Article] [PubMed]
    [Google Scholar]
  123. Fang S, Huang X, Zhang X, Zhang M, Hao Y et al. Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA. Proc Natl Acad Sci U S A 2021; 118:e2101632118 [View Article] [PubMed]
    [Google Scholar]
  124. Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008; 6:613–624 [View Article] [PubMed]
    [Google Scholar]
  125. Deutscher J, Aké FMD, Derkaoui M, Zébré AC, Cao TN et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2014; 78:231–256 [View Article] [PubMed]
    [Google Scholar]
  126. Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2006; 70:939–1031 [View Article] [PubMed]
    [Google Scholar]
  127. Sondej M, Sun J, Seok YJ, Kaback HR, Peterkofsky A. Deduction of consensus binding sequences on proteins that bind IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system by cysteine scanning mutagenesis of Escherichia coli lactose permease. Proc Natl Acad Sci U S A 1999; 96:3525–3530 [View Article] [PubMed]
    [Google Scholar]
  128. Hariharan P, Balasubramaniam D, Peterkofsky A, Kaback HR, Guan L. Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIAGlc. Proc Natl Acad Sci U S A 2015; 112:2407–2412 [View Article] [PubMed]
    [Google Scholar]
  129. Mächtel R, Narducci A, Griffith DA, Cordes T, Orelle C. An integrated transport mechanism of the maltose ABC importer. Res Microbiol 2019; 170:321–337 [View Article] [PubMed]
    [Google Scholar]
  130. Chen S, Oldham ML, Davidson AL, Chen J. Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 2013; 499:364–368 [View Article] [PubMed]
    [Google Scholar]
  131. Veenhoff LM, Poolman B. Substrate recognition at the cytoplasmic and extracellular binding site of the lactose transport protein of Streptococcus thermophilus. J Biol Chem 1999; 274:33244–33250 [View Article] [PubMed]
    [Google Scholar]
  132. Jing J, And YE, Saier MH. Cooperative binding of lactose and the phosphorylated phosphocarrier protein Hpr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis (sugar transport/allosteric control/protein phosphorylation/protein effector/phosphotransferase system). Biochem J 1995; 92: [View Article]
    [Google Scholar]
  133. Lessard C, Cochu A, Lemay J-D, Roy D, Vaillancourt K et al. Phosphorylation of Streptococcus salivarius lactose permease (LacS) by HPr(His ~ P) and HPr(Ser-P)(His ~ P) and effects on growth. J Bacteriol 2003; 185:6764–6772 [View Article] [PubMed]
    [Google Scholar]
  134. Czuba LC, Hillgren KM, Swaan PW. Post-translational modifications of transporters. Pharmacol Ther 2018; 192:88–99 [View Article] [PubMed]
    [Google Scholar]
  135. Cooper A, Woulfe D, Kilic F. Post-translational modifications of serotonin transporter. Pharmacol Res 2019; 140:7–13 [View Article] [PubMed]
    [Google Scholar]
  136. Voss M, Schröder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim Biophys Acta 2013; 1828:2828–2839 [View Article] [PubMed]
    [Google Scholar]
  137. Urban S, Lee JR, Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 2001; 107:173–182 [View Article] [PubMed]
    [Google Scholar]
  138. Urban S, Schlieper D, Freeman M. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr Biol 2002; 12:1507–1512 [View Article] [PubMed]
    [Google Scholar]
  139. Maegawa S, Ito K, Akiyama Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochem 2005; 44:13543–13552 [View Article] [PubMed]
    [Google Scholar]
  140. Wang Y, Zhang Y, Ha Y. Crystal structure of a rhomboid family intramembrane protease. Nature 2006; 444:179–180 [View Article] [PubMed]
    [Google Scholar]
  141. Rather P. Role of rhomboid proteases in bacteria. Biochim Biophys Acta Biomembr 2013; 1828:2849–2854 [View Article] [PubMed]
    [Google Scholar]
  142. Rather PN, Ding X, Baca-DeLancey RR, Siddiqui S. Providencia stuartii genes activated by cell-to-cell signaling and identification of a gene required for production or activity of an extracellular factor. J Bacteriol 1999; 181:7185–7191 [View Article] [PubMed]
    [Google Scholar]
  143. Stevenson LG, Strisovsky K, Clemmer KM, Bhatt S, Freeman M et al. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc Natl Acad Sci U S A 2007; 104:1003–1008 [View Article] [PubMed]
    [Google Scholar]
  144. Knopf JD, Lemberg MK. Derlins with scissors: primordial ERAD in bacteria. EMBO J 2020; 39:1–3 [View Article] [PubMed]
    [Google Scholar]
  145. Began J, Cordier B, Březinová J, Delisle J, Hexnerová R et al. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J 2020; 39:e102935 [View Article] [PubMed]
    [Google Scholar]
  146. Willson BJ, Dalzell L, Chapman LNM, Thomas GH. Enhanced functionalisation of major facilitator superfamily transporters via fusion of C-terminal protein domains is both extensive and varied in bacteria. Microbiology 2019; 165:419–424 [View Article] [PubMed]
    [Google Scholar]
  147. Willson BJ, Chapman LN, Thomas GH. Evolutionary dynamics of membrane transporters and channels: enhancing function through fusion. Curr Opin Genet Dev 2019; 58:76–86 [View Article] [PubMed]
    [Google Scholar]
  148. Hattori M, Tanaka Y, Fukai S, Ishitani R, Nureki O. Crystal structure of the MgtE Mg2+ transporter. Nature 2007; 448:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  149. Tomita A, Zhang M, Jin F, Zhuang W, Takeda H et al. ATP-dependent modulation of MgtE in Mg2+ homeostasis. Nat Commun 2017; 8: [View Article]
    [Google Scholar]
  150. Mulligan C, Kelly DJ, Thomas GH. Tripartite ATP-independent periplasmic transporters: application of a relational database for genome-wide analysis of transporter gene frequency and organization. J Mol Microbiol Biotechnol 2007; 12:218–226 [View Article] [PubMed]
    [Google Scholar]
  151. Orr MW, Mao Y, Storz G, Qian SB. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res 2020; 48:1029–1042 [View Article] [PubMed]
    [Google Scholar]
  152. Liu G, Beaton SE, Grieve AG, Evans R, Rogers M et al. Bacterial rhomboid proteases mediate quality control of orphan membrane proteins. EMBO J 2020; 39:e102922 [View Article] [PubMed]
    [Google Scholar]
  153. Marchesini MI, Poetsch A, Guidolín LS, Comerci DJ. Brucella abortus encodes an active rhomboid protease: proteome response after rhomboid gene deletion. Microorganisms 2022; 10:114 [View Article] [PubMed]
    [Google Scholar]
  154. Luenenschloss A, Ter Veld F, Albaum SP, Neddermann TM, Wendisch VF et al. Functional genomics uncovers pleiotropic role of rhomboids in Corynebacterium glutamicum. Front Microbiol 2022; 13:771968 [View Article] [PubMed]
    [Google Scholar]
  155. Koshy C, Schweikhard ES, Gärtner RM, Perez C, Yildiz O et al. Structural evidence for functional lipid interactions in the betaine transporter BetP. EMBO J 2013; 32:3096–3105 [View Article] [PubMed]
    [Google Scholar]
  156. Martens C, Shekhar M, Borysik AJ, Lau AM, Reading E et al. Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat Commun 2018; 9:4151 [View Article] [PubMed]
    [Google Scholar]
  157. Martens C, Stein RA, Masureel M, Roth A, Mishra S et al. Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat Struct Mol Biol 2016; 23:744–751 [View Article] [PubMed]
    [Google Scholar]
  158. Renard K, Byrne B. Insights into the role of membrane lipids in the structure, function and regulation of integral membrane proteins. Int J Mol Sci 2021; 22:9026 [View Article] [PubMed]
    [Google Scholar]
  159. Theuretzbacher U, Blasco B, Duffey M, Piddock LJV. Unrealized targets in the discovery of antibiotics for gram-negative bacterial infections. Nat Rev Drug Discov 2023 [View Article] [PubMed]
    [Google Scholar]
  160. Zhu Y, Zhou C, Wang Y, Li C. Transporter engineering for microbial manufacturing. Biotechnol J 2020; 15:e1900494 [View Article] [PubMed]
    [Google Scholar]
  161. Wu W, Liu F, Singh S. Toward engineering E. coli with an autoregulatory system for lignin valorization. Proc Natl Acad Sci U S A 2018; 115:2970–2975 [View Article] [PubMed]
    [Google Scholar]
  162. Ye D-Y, Moon JH, Jung GY. Recent progress in metabolic engineering of Escherichia coli for the production of various C4 and C5-dicarboxylic acids. J Agric Food Chem 2023; 71:10916–10931 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001412
Loading
/content/journal/micro/10.1099/mic.0.001412
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error