1887

Abstract

The human gut microbiota can restrict the growth of pathogens to prevent them from colonizing the intestine (‘colonization resistance’). However, antibiotic treatment can kill members of the gut microbiota (‘gut commensals’) and reduce competition for nutrients, making these nutrients available to support the growth of pathogens. This disturbance can lead to the growth and expansion of pathogens within the intestine (including antibiotic-resistant pathogens), where these pathogens can exploit the absence of competitors and the nutrient-enriched gut environment. In this review, we discuss nutrient competition between the gut microbiota and pathogens. We also provide an overview of how nutrient competition can be harnessed to support the design of next-generation microbiome therapeutics to restrict the growth of pathogens and prevent the development of invasive infections.

Funding
This study was supported by the:
  • Medical Research Council (Award MR/W025655/1)
    • Principle Award Recipient: JulieA. K. McDonald
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001377
2023-08-04
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/8/mic001377.html?itemId=/content/journal/micro/10.1099/mic.0.001377&mimeType=html&fmt=ahah

References

  1. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016; 14:20–32 [View Article] [PubMed]
    [Google Scholar]
  2. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut 2022; 71:1020–1032 [View Article] [PubMed]
    [Google Scholar]
  3. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010; 120:4332–4341 [View Article] [PubMed]
    [Google Scholar]
  4. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2017; 279:70–89 [View Article] [PubMed]
    [Google Scholar]
  5. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al. Diversity of the human intestinal microbial flora. Science 2005; 308:1635–1638 [View Article] [PubMed]
    [Google Scholar]
  6. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6:e280 [View Article] [PubMed]
    [Google Scholar]
  7. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al. Enterotypes of the human gut microbiome. Nature 2011; 473:174–180 [View Article] [PubMed]
    [Google Scholar]
  8. Moore WEC, Holdeman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 1974; 27:961–979 [View Article] [PubMed]
    [Google Scholar]
  9. Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: a quantitative bird’s-eye view. Front Microbiol 2017; 8:1388 [View Article] [PubMed]
    [Google Scholar]
  10. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 2012; 486:207–214 [View Article] [PubMed]
    [Google Scholar]
  11. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59–65 [View Article] [PubMed]
    [Google Scholar]
  12. Tian L, Wang X-W, Wu A-K, Fan Y, Friedman J et al. Deciphering functional redundancy in the human microbiome. Nat Commun 2020; 11:6217 [View Article] [PubMed]
    [Google Scholar]
  13. Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol 2016; 24:402–413 [View Article] [PubMed]
    [Google Scholar]
  14. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 2017; 15:630–638 [View Article] [PubMed]
    [Google Scholar]
  15. Scott KP, Duncan SH, Flint HJ. Dietary fibre and the gut microbiota. Nutr Bull 2008; 33:201–211 [View Article]
    [Google Scholar]
  16. Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol 2022; 20:542–556 [View Article] [PubMed]
    [Google Scholar]
  17. Davila A-M, Blachier F, Gotteland M, Andriamihaja M, Benetti P-H et al. Re-print of “Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host.”. Pharmacol Res 2013; 69:114–126 [View Article] [PubMed]
    [Google Scholar]
  18. Jones BV, Begley M, Hill C, Gahan CGM, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci 2008; 105:13580–13585 [View Article] [PubMed]
    [Google Scholar]
  19. Glover JS, Ticer TD, Engevik MA. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci Rep 2022; 12:8456 [View Article] [PubMed]
    [Google Scholar]
  20. Ziemer CJ. Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol 2014; 80:574–585 [View Article] [PubMed]
    [Google Scholar]
  21. Aranda-Díaz A, Willis L, Nguyen TH, Ho P-Y, Vila J et al. Assembly of gut-derived bacterial communities follows “early-bird” resource utilization dynamics. bioRxiv 20232023.01.13.523996 [View Article] [PubMed]
    [Google Scholar]
  22. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 2014; 8:1323–1335 [View Article] [PubMed]
    [Google Scholar]
  23. Rios-Covian D, Salazar N, Gueimonde M, de Los Reyes-Gavilan CG. Shaping the metabolism of intestinal Bacteroides population through diet to improve human health. Front Microbiol 2017; 8:376 [View Article] [PubMed]
    [Google Scholar]
  24. Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett 2009; 299:128–134 [View Article] [PubMed]
    [Google Scholar]
  25. Duncan SH, Louis P, Flint HJL-UB. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70:5810–5817 [View Article] [PubMed]
    [Google Scholar]
  26. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017; 19:29–41 [View Article] [PubMed]
    [Google Scholar]
  27. Louis P, Duncan SH, Sheridan PO, Walker AW, Flint HJ. Microbial lactate utilisation and the stability of the gut microbiome. Gut Microb 2022; 3:e3 [View Article]
    [Google Scholar]
  28. Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT et al. Decreased diversity of the fecal microbiome in recurrent clostridium difficile-associated diarrhea. J Infect Dis 2008; 197:435–438 [View Article] [PubMed]
    [Google Scholar]
  29. Pérez-Cobas AE, Artacho A, Knecht H, Ferrús ML, Friedrichs A et al. Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS One 2013; 8:e80201 [View Article] [PubMed]
    [Google Scholar]
  30. Bonten MJ, Willems R, Weinstein RA. Vancomycin-resistant enterococci: why are they here, and where do they come from?. Lancet Infect Dis 2001; 1:314–325 [View Article] [PubMed]
    [Google Scholar]
  31. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 2011; 53:60–67 [View Article] [PubMed]
    [Google Scholar]
  32. Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 2014; 5:3114 [View Article] [PubMed]
    [Google Scholar]
  33. Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev 2019; 83:e00007–19 [View Article]
    [Google Scholar]
  34. Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023; 21:347–360 [View Article] [PubMed]
    [Google Scholar]
  35. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 2019; 7:91 [View Article] [PubMed]
    [Google Scholar]
  36. Repaske DR, Adler J. Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J Bacteriol 1981; 145:1196–1208 [View Article] [PubMed]
    [Google Scholar]
  37. Sorbara MT, Dubin K, Littmann ER, Moody TU, Fontana E et al. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. J Exp Med 2019; 216:84–98 [View Article] [PubMed]
    [Google Scholar]
  38. Djukovic A, Garzón MJ, Canlet C, Cabral V, Lalaoui R et al. Lactobacillus supports Clostridiales to restrict gut colonization by multidrug-resistant Enterobacteriaceae. Nat Commun 2022; 13:5617 [View Article] [PubMed]
    [Google Scholar]
  39. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011; 469:543–547 [View Article] [PubMed]
    [Google Scholar]
  40. Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J et al. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe 2018; 24:296–307 [View Article] [PubMed]
    [Google Scholar]
  41. Casaburi G, Frese SA. Colonization of breastfed infants by Bifidobacterium longum subsp. infantis EVC001 reduces virulence gene abundance. Hum Microbiome J 2018; 9:7–10 [View Article]
    [Google Scholar]
  42. Duar RM, Kyle D, Casaburi G. Colonization resistance in the infant gut: the role of B. infantis in reducing pH and preventing pathogen growth. High Throughput 2020; 9:7 [View Article] [PubMed]
    [Google Scholar]
  43. Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC et al. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. mSphere 2017; 2: [View Article]
    [Google Scholar]
  44. Firrman J, Liu L, Mahalak K, Tanes C, Bittinger K et al. The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production. FEMS Microbiol Ecol 2022; 98:fiac038 [View Article] [PubMed]
    [Google Scholar]
  45. Gao G, Zhou J, Wang H, Ding Y, Zhou J et al. Effects of valerate on intestinal barrier function in cultured Caco-2 epithelial cell monolayers. Mol Biol Rep 2022; 49:1817–1825 [View Article] [PubMed]
    [Google Scholar]
  46. Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol 2021; 11:1463–1482 [View Article] [PubMed]
    [Google Scholar]
  47. Nielsen DSG, Jensen BB, Theil PK, Nielsen TS, Knudsen KEB et al. Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line. J Funct Food 2018; 40:9–17 [View Article]
    [Google Scholar]
  48. Fachi JL, Felipe J de S, Pral LP, da Silva BK, Corrêa RO et al. Butyrate protects mice from Clostridium difficile-induced colitis through an HIF-1-dependent mechanism. Cell Rep 2019; 27:750–761 [View Article] [PubMed]
    [Google Scholar]
  49. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008; 27:104–119 [View Article] [PubMed]
    [Google Scholar]
  50. Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX et al. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 2016; 19:443–454 [View Article] [PubMed]
    [Google Scholar]
  51. Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 2008; 190:2505–2512 [View Article] [PubMed]
    [Google Scholar]
  52. Mullish BH, McDonald JAK, Pechlivanis A, Allegretti JR, Kao D et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut 2019; 68:1791–1800 [View Article] [PubMed]
    [Google Scholar]
  53. Hirano S, Nakama R, Tamaki M, Masuda N, Oda H. Isolation and characterization of thirteen intestinal microorganisms capable of 7 alpha-dehydroxylating bile acids. Appl Environ Microbiol 1981; 41:737–745 [View Article]
    [Google Scholar]
  54. Sorg JA, Sonenshein AL. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 2010; 192:4983–4990 [View Article] [PubMed]
    [Google Scholar]
  55. Wells JE, Hylemon PB. Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces. Appl Environ Microbiol 2000; 66:1107–1113 [View Article] [PubMed]
    [Google Scholar]
  56. Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 2017; 45:86–100 [View Article] [PubMed]
    [Google Scholar]
  57. Theriot CM, Bowman AA, Young VB, Ellermeier CD. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 2016; 1:e00045-15 [View Article] [PubMed]
    [Google Scholar]
  58. Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 2017; 279:90–105 [View Article] [PubMed]
    [Google Scholar]
  59. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011; 5:220–230 [View Article] [PubMed]
    [Google Scholar]
  60. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505:559–563 [View Article] [PubMed]
    [Google Scholar]
  61. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 2014; 8:2218–2230 [View Article] [PubMed]
    [Google Scholar]
  62. Salonen A, Salojärvi J, Lahti L, de Vos WM. The adult intestinal core microbiota is determined by analysis depth and health status. Clin Microbiol Infect 2012; 18 Suppl 4:16–20 [View Article] [PubMed]
    [Google Scholar]
  63. Donskey CJ, Hume ME, Callaway TR, Das SM, Hoyen CK et al. Inhibition of vancomycin-resistant enterococci by an in vitro continuous-flow competitive exclusion culture containing human stool flora. J Infect Dis 2001; 184:1624–1627 [View Article] [PubMed]
    [Google Scholar]
  64. Tramontano M, Andrejev S, Pruteanu M, Klünemann M, Kuhn M et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol 2018; 3:514–522 [View Article] [PubMed]
    [Google Scholar]
  65. Pudlo NA, Urs K, Kumar SS, German JB, Mills DA et al. Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. mBio 2015; 6:e01282-15 [View Article] [PubMed]
    [Google Scholar]
  66. Holmes AJ, Chew YV, Colakoglu F, Cliff JB, Klaassens E et al. Diet-microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab 2017; 25:140–151 [View Article] [PubMed]
    [Google Scholar]
  67. Coyte KZ, Rakoff-Nahoum S. Understanding competition and cooperation within the mammalian gut microbiome. Curr Biol 2019; 29:R538–R544 [View Article] [PubMed]
    [Google Scholar]
  68. Keeney KM, Finlay BB. Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut. Curr Opin Microbiol 2011; 14:92–98 [View Article] [PubMed]
    [Google Scholar]
  69. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ et al. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 2013; 14:26–37 [View Article] [PubMed]
    [Google Scholar]
  70. Behnsen J, Zhi H, Aron AT, Subramanian V, Santus W et al. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nat Commun 2021; 12:7016 [View Article] [PubMed]
    [Google Scholar]
  71. Freter R, Brickner H, Fekete J, Vickerman MM, Carey KE. Survival and implantation of Escherichia coli in the intestinal tract. Infect Immun 1983; 39:686–703 [View Article] [PubMed]
    [Google Scholar]
  72. Maldonado-Gómez MX, Martínez I, Bottacini F, O’Callaghan A, Ventura M et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 2016; 20:515–526 [View Article] [PubMed]
    [Google Scholar]
  73. Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013; 501:426–429 [View Article] [PubMed]
    [Google Scholar]
  74. Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS One 2013; 8:e53957 [View Article] [PubMed]
    [Google Scholar]
  75. Momose Y, Hirayama K, Itoh K. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek 2008; 94:165–171 [View Article] [PubMed]
    [Google Scholar]
  76. Osbelt L, Wende M, Almási É, Derksen E, Muthukumarasamy U et al. Klebsiella oxytoca causes colonization resistance against multidrug-resistant K. pneumoniae in the gut via cooperative carbohydrate competition. Cell Host Microbe 2021; 29:1663–1679 [View Article] [PubMed]
    [Google Scholar]
  77. Oliveira RA, Ng KM, Correia MB, Cabral V, Shi H et al. Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition. Nat Microbiol 2020; 5:630–641 [View Article] [PubMed]
    [Google Scholar]
  78. Panda S, El khader I, Casellas F, López Vivancos J, García Cors M et al. Short-term effect of antibiotics on human gut microbiota. PLoS One 2014; 9:e95476 [View Article] [PubMed]
    [Google Scholar]
  79. Yip AYG, King OG, Omelchenko O, Kurkimat S, Horrocks V et al. Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites. Microbiology 2023 [View Article]
    [Google Scholar]
  80. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013; 502:96–99 [View Article] [PubMed]
    [Google Scholar]
  81. Young VB, Schmidt TM. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol 2004; 42:1203–1206 [View Article] [PubMed]
    [Google Scholar]
  82. Roe AJ, O’Byrne C, McLaggan D, Booth IR. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 2002; 148:2215–2222 [View Article] [PubMed]
    [Google Scholar]
  83. Rivera-Chávez F, Lopez CA, Bäumler AJ. Oxygen as a driver of gut dysbiosis. Free Radic Biol Med 2017; 105:93–101 [View Article] [PubMed]
    [Google Scholar]
  84. Shimasaki T, Seekatz A, Bassis C, Rhee Y, Yelin RD et al. Increased relative abundance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae within the gut microbiota is associated with risk of bloodstream infection in long-term acute care hospital patients. Clin Infect Dis 2019; 68:2053–2059 [View Article] [PubMed]
    [Google Scholar]
  85. Correa-Martinez CL, Tönnies H, Froböse NJ, Mellmann A, Kampmeier S. Transmission of vancomycin-resistant enterococci in the hospital setting: uncovering the patient-environment interplay. Microorganisms 2020; 8:203 [View Article] [PubMed]
    [Google Scholar]
  86. Ventola CL. The antibiotic resistance crisis. Pharm Ther 2015; 40:277–283
    [Google Scholar]
  87. Fletcher JR, Erwin S, Lanzas C, Theriot CM. Shifts in the gut metabolome and Clostridium difficile transcriptome throughout colonization and infection in a mouse model. mSphere 2018; 3:e00089-18 [View Article] [PubMed]
    [Google Scholar]
  88. Hudson AW, Barnes AJ, Bray AS, Ornelles DA, Zafar MA. Klebsiella pneumoniae l-Fucose metabolism promotes gastrointestinal colonization and modulates its virulence determinants. Infect Immun 2022; 90:e0020622 [View Article] [PubMed]
    [Google Scholar]
  89. Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA et al. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. Elife 2018; 7:e35987 [View Article] [PubMed]
    [Google Scholar]
  90. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015; 17:662–671 [View Article] [PubMed]
    [Google Scholar]
  91. Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 2017; 357:570–575 [View Article] [PubMed]
    [Google Scholar]
  92. Donohoe DR, Wali A, Brylawski BP, Bultman SJ. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS One 2012; 7:e46589 [View Article] [PubMed]
    [Google Scholar]
  93. Cole J. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation?. FEMS Microbiol Lett 1996; 136:1–11 [View Article]
    [Google Scholar]
  94. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 2013; 339:708–711 [View Article]
    [Google Scholar]
  95. McLaughlin PA, Bettke JA, Tam JW, Leeds J, Bliska JB et al. Inflammatory monocytes provide a niche for Salmonella expansion in the lumen of the inflamed intestine. PLoS Pathog 2019; 15:e1007847 [View Article]
    [Google Scholar]
  96. Liou MJ, Miller BM, Litvak Y, Nguyen H, Natwick DE et al. Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes. Cell Host Microbe 2022; 30:836–847 [View Article] [PubMed]
    [Google Scholar]
  97. Shepherd ES, DeLoache WC, Pruss KM, Whitaker WR, Sonnenburg JL. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 2018; 557:434–438 [View Article]
    [Google Scholar]
  98. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 2020; 17:687–701 [View Article] [PubMed]
    [Google Scholar]
  99. Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 2012; 336:1325–1329 [View Article] [PubMed]
    [Google Scholar]
  100. Bilsen MP, Lambregts MMC, van Prehn J, Kuijper EJ. Faecal microbiota replacement to eradicate antimicrobial resistant bacteria in the intestinal tract - a systematic review. Curr Opin Gastroenterol 2022; 38:15–25 [View Article] [PubMed]
    [Google Scholar]
  101. Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 2014; 109:1065–1071 [View Article] [PubMed]
    [Google Scholar]
  102. Dinh A, Fessi H, Duran C, Batista R, Michelon H et al. Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant enterococci carriage after faecal microbiota transplant: a prospective comparative study. J Hosp Infect 2018; 99:481–486 [View Article] [PubMed]
    [Google Scholar]
  103. Saïdani N, Lagier J-C, Cassir N, Million M, Baron S et al. Faecal microbiota transplantation shortens the colonisation period and allows re-entry of patients carrying carbapenamase-producing bacteria into medical care facilities. Int J Antimicrob Agents 2019; 53:355–361 [View Article] [PubMed]
    [Google Scholar]
  104. Merrick B, Sergaki C, Edwards L, Moyes DL, Kertanegara M et al. Modulation of the gut microbiota to control antimicrobial resistance (AMR)-a narrative review with a focus on Faecal Microbiota Transplantation (FMT). Infect Dis Rep 2023; 15:238–254 [View Article] [PubMed]
    [Google Scholar]
  105. McDonald JAK, Mullish BH, Pechlivanis A, Liu Z, Brignardello J et al. Inhibiting growth of Clostridioides difficile by restoring valerate, produced by the intestinal microbiota. Gastroenterology 2018; 155:1495–1507 [View Article] [PubMed]
    [Google Scholar]
  106. Seekatz AM, Theriot CM, Rao K, Chang Y-M, Freeman AE et al. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe 2018; 53:64–73 [View Article]
    [Google Scholar]
  107. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368:407–415 [View Article]
    [Google Scholar]
  108. Rapoport EA, Baig M, Puli SR. Adverse events in fecal microbiota transplantation: a systematic review and meta-analysis. Ann Gastroenterol 2022; 35:150–163 [View Article] [PubMed]
    [Google Scholar]
  109. Gupta S, Mullish BH, Allegretti JR. Fecal microbiota transplantation: the evolving risk landscape. Am J Gastroenterol 2021; 116:647–656 [View Article]
    [Google Scholar]
  110. Lawley TD, Clare S, Walker AW, Stares MD, Connor TR et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 2012; 8:e1002995 [View Article] [PubMed]
    [Google Scholar]
  111. Martz S-LE, McDonald JAK, Sun J, Zhang Y, Gloor GB et al. Administration of defined microbiota is protective in a murine Salmonella infection model. Sci Rep 2015; 5:16094 [View Article]
    [Google Scholar]
  112. Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: “RePOOPulating” the gut. Microbiome 2013; 1:3 [View Article] [PubMed]
    [Google Scholar]
  113. Isaac S, Flor-Duro A, Carruana G, Puchades-Carrasco L, Quirant A et al. Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus. Nat Commun 2022; 13:7718 [View Article] [PubMed]
    [Google Scholar]
  114. Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 2020; 11:5104 [View Article] [PubMed]
    [Google Scholar]
  115. Martens EC, Kelly AG, Tauzin AS, Brumer H. The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. J Mol Biol 2014; 426:3851–3865 [View Article] [PubMed]
    [Google Scholar]
  116. Palframan RJ, Gibson GR, Rastall RA. Carbohydrate preferences of Bifidobacterium species isolated from the human gut. Curr Issues Intest Microbiol 2003; 4:71–75 [PubMed]
    [Google Scholar]
  117. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 2015; 5:15782 [View Article] [PubMed]
    [Google Scholar]
  118. King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S et al. Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS One 2019; 14:e0206484 [View Article] [PubMed]
    [Google Scholar]
  119. O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 2016; 7:925 [View Article] [PubMed]
    [Google Scholar]
  120. Fischbach MA, Sonnenburg JL. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 2011; 10:336–347 [View Article] [PubMed]
    [Google Scholar]
  121. Salyers AA, Vercellotti JR, West SE, Wilkins TD. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 1977; 33:319–322 [View Article] [PubMed]
    [Google Scholar]
  122. Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio 2019; 10:e02566-18 [View Article] [PubMed]
    [Google Scholar]
  123. Eberl C, Weiss AS, Jochum LM, Durai Raj AC, Ring D et al. E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source. Cell Host Microbe 2021; 29:1680–1692 [View Article] [PubMed]
    [Google Scholar]
  124. Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature 2016; 533:255–259 [View Article] [PubMed]
    [Google Scholar]
  125. Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D et al. Glycan utilization and cross-feeding activities by Bifidobacteria. Trends Microbiol 2018; 26:339–350 [View Article] [PubMed]
    [Google Scholar]
  126. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 2015; 5:15782 [View Article]
    [Google Scholar]
  127. Caballero S, Kim S, Carter RA, Leiner IM, Sušac B et al. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 2017; 21:592–602 [View Article] [PubMed]
    [Google Scholar]
  128. Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 2008; 76:1143–1152 [View Article] [PubMed]
    [Google Scholar]
  129. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci 2011; 108:4554–4561 [View Article] [PubMed]
    [Google Scholar]
  130. Chi Z, Liu J, Zhang W. Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. Enzyme Microb Technol 2001; 28:240–245 [View Article] [PubMed]
    [Google Scholar]
  131. DeMartino P, Cockburn DW. Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol 2020; 61:66–71 [View Article] [PubMed]
    [Google Scholar]
  132. Niness KR. Inulin and oligofructose: what are they?. J Nutr 1999; 129:1402S–6S [View Article] [PubMed]
    [Google Scholar]
  133. Kaya M, Sousa AG, Crépeau M-J, Sørensen SO, Ralet M-C. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction. Ann Bot 2014; 114:1319–1326 [View Article] [PubMed]
    [Google Scholar]
  134. Kelly GS. Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide. Altern Med Rev 1999; 4:96–103 [PubMed]
    [Google Scholar]
  135. Pultz NJ, Hoskins LC, Donskey CJ. Vancomycin-resistant Enterococci may obtain nutritional support by scavenging carbohydrate fragments generated during mucin degradation by the anaerobic microbiota of the colon. Microb Drug Resist 2006; 12:63–67 [View Article] [PubMed]
    [Google Scholar]
  136. Bastawde KB. Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 1992; 8:353–368 [View Article] [PubMed]
    [Google Scholar]
  137. Ahmadi S et al. Dietary polysaccharides in the amelioration of gut microbiome dysbiosis and metabolic diseases. Obes Control Ther Open Access 2017; 4: [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001377
Loading
/content/journal/micro/10.1099/mic.0.001377
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error