1887

Abstract

The exchange of ammonium across cellular membranes is a fundamental process in all domains of life. In plants, bacteria and fungi, ammonium represents a vital source of nitrogen, which is scavenged from the external environment. In contrast, in animal cells ammonium is a cytotoxic metabolic waste product and must be excreted to prevent cell death. Transport of ammonium is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. In addition to their function as transporters, Amt/Mep/Rh proteins play roles in a diverse array of biological processes and human physiopathology. Despite this clear physiological importance and medical relevance, the molecular mechanism of Amt/Mep/Rh proteins has remained elusive. Crystal structures of bacterial Amt/Rh proteins suggest electroneutral transport, whilst functional evidence supports an electrogenic mechanism. Here, focusing on bacterial members of the family, we summarize the structure of Amt/Rh proteins and what three decades of research tells us concerning the general mechanisms of ammonium translocation, in particular the possibility that the transport mechanism might differ in various members of the Amt/Mep/Rh superfamily.

Funding
This study was supported by the:
  • Royal Academy of Engineering Research (Award RCSRF2021\11\15)
    • Principle Award Recipient: PaulA. Hoskisson
  • BBSRC (Award BB/T001038/1)
    • Principle Award Recipient: PaulA. Hoskisson
  • Tenovus (Award S17-07)
    • Principle Award Recipient: ArnaudJavelle
  • BBSRC (Award BB/T004126/1)
    • Principle Award Recipient: PaulA. Hoskisson
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001360
2023-07-14
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/7/mic001360.html?itemId=/content/journal/micro/10.1099/mic.0.001360&mimeType=html&fmt=ahah

References

  1. Britto DT, Siddiqi MY, Glass AD, Kronzucker HJ. Futile transmembrane NH4(+) cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci 2001; 98:4255–4258 [View Article] [PubMed]
    [Google Scholar]
  2. Kleiner D. The transport of NH3 and NH4+ across biological membranes. Biochim Biophys Acta 1981; 639:41–52 [View Article] [PubMed]
    [Google Scholar]
  3. Reitzer L. Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 2003; 57:155–176 [View Article] [PubMed]
    [Google Scholar]
  4. Bock E, Wagner M. Oxidation of inorganic nitrogen compounds as an energy source. Prokaryotes 2006457–495 [View Article]
    [Google Scholar]
  5. Knepper MA, Desai SS, Hornbuckle K, Packer RK. Regulation of renal medullary ammonium accumulation. Contrib Nephrol 1991; 92:119–123 [View Article] [PubMed]
    [Google Scholar]
  6. Pitts RF. The role of ammonia production and excretion in regulation of acid-base balance. N Engl J Med 1971; 284:32–38 [View Article] [PubMed]
    [Google Scholar]
  7. Auron A, Brophy PD. Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol 2012; 27:207–222 [View Article] [PubMed]
    [Google Scholar]
  8. Wright G, Noiret L, Olde Damink SWM, Jalan R. Interorgan ammonia metabolism in liver failure: the basis of current and future therapies. Liver Int 2011; 31:163–175 [View Article] [PubMed]
    [Google Scholar]
  9. Lande MB, Donovan JM, Zeidel ML. The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J Gen Physiol 1995; 106:67–84 [View Article] [PubMed]
    [Google Scholar]
  10. Winkler FK. Amt/MEP/Rh proteins conduct ammonia. Pflugers Arch 2006; 451:701–707 [View Article] [PubMed]
    [Google Scholar]
  11. Bates RG, Pinching GD. Dissociation constant of aqueous ammonia at 0 to 50° from E. m. f. studies of the ammonium salt of a weak acid. J Am Chem Soc 1950; 72:1393–1396 [View Article]
    [Google Scholar]
  12. Kikeri D, Sun A, Zeidel ML, Hebert SC. Cell membranes impermeable to NH3. Nature 1989; 339:478–480 [View Article] [PubMed]
    [Google Scholar]
  13. Benko PV, Wood TC, Segel IH. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Arch Biochem Biophys 1969; 129:498–508 [View Article] [PubMed]
    [Google Scholar]
  14. Hackette SL, Skye GE, Burton C, Segel IH. Characterization of an ammonium transport system in filamentous fungi with methylammonium-14C as the substrate. J Biol Chem 1970; 245:4241–4250 [PubMed]
    [Google Scholar]
  15. Marini AM, Vissers S, Urrestarazu A, André B. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 1994; 13:3456–3463 [View Article] [PubMed]
    [Google Scholar]
  16. Ninnemann O, Jauniaux JC, Frommer WB. Identification of a high affinity NH4+ transporter from plants. EMBO J 1994; 13:3464–3471 [View Article] [PubMed]
    [Google Scholar]
  17. Marini AM, Soussi-Boudekou S, Vissers S, Andre B. A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:4282–4293 [View Article] [PubMed]
    [Google Scholar]
  18. Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M et al. Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 1996; 271:5398–5403 [View Article] [PubMed]
    [Google Scholar]
  19. Biswas K, Morschhäuser J. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 2005; 56:649–669 [View Article] [PubMed]
    [Google Scholar]
  20. Javelle A, Chalot M, Söderström B, Botton B. Ammonium and methylamine transport by the ectomycorrhizal fungus Paxillus involutus and ectomycorrhizas. FEMS Microbiol Ecol 1999; 30:355–366 [View Article] [PubMed]
    [Google Scholar]
  21. Javelle A, Rodríguez-Pastrana BR, Jacob C, Botton B, Brun A et al. Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett 2001; 505:393–398 [View Article] [PubMed]
    [Google Scholar]
  22. Javelle A, Morel M, Rodríguez-Pastrana B-R, Botton B, André B et al. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 2003; 47:411–430 [View Article] [PubMed]
    [Google Scholar]
  23. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 1997; 390:364–370 [View Article] [PubMed]
    [Google Scholar]
  24. van Heeswijk WC, Hoving S, Molenaar D, Stegeman B, Kahn D et al. An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol Microbiol 1996; 21:133–146 [View Article] [PubMed]
    [Google Scholar]
  25. Marini AM, Urrestarazu A, Beauwens R, André B. The Rh (rhesus) blood group polypeptides are related to NH4+ transporters. Trends Biochem Sci 1997; 22:460–461 [View Article] [PubMed]
    [Google Scholar]
  26. Matassi G, Chérif-Zahar B, Pesole G, Raynal V, Cartron JP. The members of the RH gene family (RH50 and RH30) followed different evolutionary pathways. J Mol Evol 1999; 48:151–159 [View Article] [PubMed]
    [Google Scholar]
  27. Marini AM, Matassi G, Raynal V, André B, Cartron JP et al. The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 2000; 26:341–344 [View Article] [PubMed]
    [Google Scholar]
  28. Liu Z, Chen Y, Mo R, Hui C, Cheng JF et al. Characterization of human RhCG and mouse Rhcg as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis. J Biol Chem 2000; 275:25641–25651 [View Article] [PubMed]
    [Google Scholar]
  29. Liu Z, Peng J, Mo R, Hui C, Huang CH. Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 2001; 276:1424–1433 [View Article] [PubMed]
    [Google Scholar]
  30. Huang CH, Peng J. Evolutionary conservation and diversification of Rh family genes and proteins. Proc Natl Acad Sci 2005; 102:15512–15517 [View Article] [PubMed]
    [Google Scholar]
  31. Kitano T, Saitou N. Evolutionary history of the Rh blood group-related genes in vertebrates. Immunogenetics 2000; 51:856–862 [View Article] [PubMed]
    [Google Scholar]
  32. Chain P, Lamerdin J, Larimer F, Regala W, Lao V et al. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 2003; 185:2759–2773 [View Article] [PubMed]
    [Google Scholar]
  33. Ji Q, Hashmi S, Liu Z, Zhang J, Chen Y et al. CeRh1 (rhr-1) is a dominant Rhesus gene essential for embryonic development and hypodermal function in Caenorhabditis elegans. Proc Natl Acad Sci 2006; 103:5881–5886 [View Article] [PubMed]
    [Google Scholar]
  34. Soupene E, Inwood W, Kustu S. Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc Natl Acad Sci 2004; 101:7787–7792 [View Article] [PubMed]
    [Google Scholar]
  35. Lorenz MC, Heitman J. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 1998; 17:1236–1247 [View Article] [PubMed]
    [Google Scholar]
  36. Lee IR, Morrow CA, Fraser JA. Nitrogen regulation of virulence in clinically prevalent fungal pathogens. FEMS Microbiol Lett 2013; 345:77–84 [View Article] [PubMed]
    [Google Scholar]
  37. Lo H-J, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A et al. Nonfilamentous C. albicans mutants are avirulent. Cell 1997; 90:939–949 [View Article]
    [Google Scholar]
  38. Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M et al. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 2008; 456:339–343 [View Article] [PubMed]
    [Google Scholar]
  39. Laing CM, Toye AM, Capasso G, Unwin RJ. Renal tubular acidosis: developments in our understanding of the molecular basis. Int J Biochem Cell Biol 2005; 37:1151–1161 [View Article] [PubMed]
    [Google Scholar]
  40. Huang CH, Chen Y, Reid ME, Seidl C. Rhnull disease: the amorph type results from a novel double mutation in RhCe gene on D-negative background. Blood 1998; 92:664–671 [PubMed]
    [Google Scholar]
  41. Schmidt PJ, Vos GH. Multiple phenotypic abnormalities associated with Rh-null (---/---). Vox Sang 1967; 13:18–20 [View Article] [PubMed]
    [Google Scholar]
  42. Agre P, Cartron JP. Molecular biology of the Rh antigens. Blood 1991; 78:551–563 [PubMed]
    [Google Scholar]
  43. Bruce LJ, Guizouarn H, Burton NM, Gabillat N, Poole J et al. The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein. Blood 2009; 113:1350–1357 [View Article] [PubMed]
    [Google Scholar]
  44. Chen BS, Xu ZX, Xu X, Cai Y, Han YL et al. RhCG is downregulated in oesophageal squamous cell carcinomas, but expressed in multiple squamous epithelia. Eur J Cancer 2002; 38:1927–1936 [View Article] [PubMed]
    [Google Scholar]
  45. Johansson FK, Brodd J, Eklöf C, Ferletta M, Hesselager G et al. Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. Proc Natl Acad Sci 2004; 101:11334–11337 [View Article] [PubMed]
    [Google Scholar]
  46. Huang CH, Ye M. The Rh protein family: gene evolution, membrane biology, and disease association. Cell Mol Life Sci 2010; 67:1203–1218 [View Article] [PubMed]
    [Google Scholar]
  47. Javelle A, Lupo D, Li XD, Merrick M, Chami M et al. Structural and mechanistic aspects of Amt/Rh proteins. J Struct Biol 2007; 158:472–481 [View Article] [PubMed]
    [Google Scholar]
  48. Kleiner D. Bacterial ammonium transport. FEMS Microbiol Rev 1985; 32:87–100 [View Article]
    [Google Scholar]
  49. Soupene E, He L, Yan D, Kustu S. Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci 1998; 95:7030–7034 [View Article] [PubMed]
    [Google Scholar]
  50. Soupene E, Lee H, Kustu S. Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH 3 bidirectionally. Proc Natl Acad Sci 2002; 99:3926–3931 [View Article]
    [Google Scholar]
  51. Soupene E, Ramirez RM, Kustu S. Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH(3) across the cytoplasmic membrane. Mol Cell Biol 2001; 21:5733–5741 [View Article] [PubMed]
    [Google Scholar]
  52. Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Krämer R et al. Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. Microbiology 2001; 147:135–143 [View Article] [PubMed]
    [Google Scholar]
  53. Ludewig U, von Wirén N, Frommer WB. Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem 2002; 277:13548–13555 [View Article] [PubMed]
    [Google Scholar]
  54. Ludewig U, Wilken S, Wu B, Jost W, Obrdlik P et al. Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters. J Biol Chem 2003; 278:45603–45610 [View Article] [PubMed]
    [Google Scholar]
  55. Ludewig U. Electroneutral ammonium transport by basolateral rhesus B glycoprotein. J Physiol 2004; 559:751–759 [View Article]
    [Google Scholar]
  56. Bakouh N, Benjelloun F, Hulin P, Brouillard F, Edelman A et al. NH3 is involved in the NH4+ transport induced by the functional expression of the human Rh C glycoprotein. J Biol Chem 2004; 279:15975–15983 [View Article] [PubMed]
    [Google Scholar]
  57. Hemker MB, Cheroutre G, van Zwieten R, Maaskant-van Wijk PA, Roos D et al. The Rh complex exports ammonium from human red blood cells. Br J Haematol 2003; 122:333–340 [View Article] [PubMed]
    [Google Scholar]
  58. Westhoff CM, Ferreri-Jacobia M, Mak DO, Foskett JK. Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter. J Biol Chem 2002; 277:12499–12502 [View Article] [PubMed]
    [Google Scholar]
  59. Thomas GH, Mullins JG, Merrick M. Membrane topology of the Mep/Amt family of ammonium transporters. Mol Microbiol 2000; 37:331–344 [View Article] [PubMed]
    [Google Scholar]
  60. Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B et al. Function of human Rh based on structure of RhCG at 2.1 Å. Proc Natl Acad Sci 2010; 107:9638–9643 [View Article]
    [Google Scholar]
  61. Marini AM, Springael JY, Frommer WB, André B. Cross-talk between ammonium transporters in yeast and interference by the soybean SAT1 protein. Mol Microbiol 2000; 35:378–385 [View Article] [PubMed]
    [Google Scholar]
  62. Blakey D, Leech A, Thomas GH, Coutts G, Findlay K et al. Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem J 2002; 364:527–535 [View Article] [PubMed]
    [Google Scholar]
  63. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci 2009; 106:1760–1765 [View Article]
    [Google Scholar]
  64. Conroy MJ, Jamieson SJ, Blakey D, Kaufmann T, Engel A et al. Electron and atomic force microscopy of the trimeric ammonium transporter AmtB. EMBO Rep 2004; 5:1153–1158 [View Article] [PubMed]
    [Google Scholar]
  65. Khademi S, O’Connell J III, Remis J, Robles-Colmenares Y, Miercke LJW et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 2004; 305:1587–1594 [View Article]
    [Google Scholar]
  66. Zheng L, Kostrewa D, Bernèche S, Winkler FK, Li XD. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci 2004; 101:17090–17095 [View Article]
    [Google Scholar]
  67. Dias Mirandela G, Tamburrino G, Ivanović MT, Strnad FM, Byron O et al. Merging in-solution X-ray and neutron scattering data allows fine structural analysis of membrane–protein detergent complexes. J Phys Chem Lett 2018; 9:3910–3914 [View Article]
    [Google Scholar]
  68. Andrade SLA, Dickmanns A, Ficner R, Einsle O. Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc Natl Acad Sci 2005; 102:14994–14999 [View Article]
    [Google Scholar]
  69. Lupo D, Li X-D, Durand A, Tomizaki T, Cherif-Zahar B et al. The 1.3-Å resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH 3 transport by Rhesus family proteins. Proc Natl Acad Sci 2007; 104:19303–19308 [View Article]
    [Google Scholar]
  70. Pflüger T, Hernández CF, Lewe P, Frank F, Mertens H et al. Signaling ammonium across membranes through an ammonium sensor histidine kinase. Nat Commun 2018; 9:164 [View Article] [PubMed]
    [Google Scholar]
  71. van den Berg B, Chembath A, Jefferies D, Basle A, Khalid S et al. Structural basis for Mep2 ammonium transceptor activation by phosphorylation. Nat Commun 2016; 7:11337 [View Article]
    [Google Scholar]
  72. Wirén N, Merrick M. Regulation and function of ammonium carriers in bacteria, fungi, and plants. In Molecular Mechanisms Controlling Transmembrane Transport Berlin, Heidelberg: Topics in Current Genetics, Springer; 2004 [View Article]
    [Google Scholar]
  73. Javelle A, Lupo D, Ripoche P, Fulford T, Merrick M et al. Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB. Proc Natl Acad Sci 2008; 105:5040–5045 [View Article]
    [Google Scholar]
  74. Javelle A, Severi E, Thornton J, Merrick M. Ammonium sensing in Escherichia coli. Role of the ammonium transporter AmtB and AmtB-GlnK complex formation. J Biol Chem 2004; 279:8530–8538 [View Article] [PubMed]
    [Google Scholar]
  75. Javelle A, Lupo D, Zheng L, Li XD, Winkler FK et al. An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance. J Biol Chem 2006; 281:39492–39498 [View Article] [PubMed]
    [Google Scholar]
  76. Williamson G, Tamburrino G, Bizior A, Boeckstaens M, Dias Mirandela G et al. A two-lane mechanism for selective biological ammonium transport. Elife 2020; 9:e57183 [View Article] [PubMed]
    [Google Scholar]
  77. Williamson G, Brito AS, Bizior A, Tamburrino G, Dias Mirandela G et al. Coexistence of ammonium transporter and channel mechanisms in Amt-Mep-Rh twin-his variants impairs the filamentation signaling capacity of fungal Mep2 transceptors. mBio 2022; 13:e0291321 [View Article] [PubMed]
    [Google Scholar]
  78. Severi E, Javelle A, Merrick M. The conserved carboxy-terminal region of the ammonia channel AmtB plays a critical role in channel function. Mol Membr Biol 2007; 24:161–171 [View Article] [PubMed]
    [Google Scholar]
  79. Coutts G, Thomas G, Blakey D, Merrick M. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 2002; 21:536–545 [View Article] [PubMed]
    [Google Scholar]
  80. Javelle A, Thomas G, Marini AM, Krämer R, Merrick M. In vivo functional characterization of the Escherichia coli ammonium channel AmtB: evidence for metabolic coupling of AmtB to glutamine synthetase. Biochem J 2005; 390:215–222 [View Article] [PubMed]
    [Google Scholar]
  81. Conroy MJ, Durand A, Lupo D, Li X-D, Bullough PA et al. The crystal structure of the Escherichia coli AmtB–GlnK complex reveals how GlnK regulates the ammonia channel. Proc Natl Acad Sci USA 2007; 104:1213–1218 [View Article]
    [Google Scholar]
  82. Bazzone A, Barthmes M, Fendler K. SSM-based electrophysiology for transporter research. Meth Enzymol 2017; 594:31–83 [View Article]
    [Google Scholar]
  83. Tremblay PL, Hallenbeck PC. Of blood, brains and bacteria, the Amt/Rh transporter family: emerging role of Amt as a unique microbial sensor. Mol Microbiol 2009; 71:12–22 [View Article] [PubMed]
    [Google Scholar]
  84. Li X, Jayachandran S, Nguyen HHT, Chan MK. Structure of the Nitrosomonas europaea Rh protein. Proc Natl Acad Sci 2007; 104:19279–19284 [View Article] [PubMed]
    [Google Scholar]
  85. Eyers SA, Ridgwell K, Mawby WJ, Tanner MJ. Topology and organization of human Rh (rhesus) blood group-related polypeptides. J Biol Chem 1994; 269:6417–6423 [PubMed]
    [Google Scholar]
  86. Guan L, Kaback HR. Lessons from lactose permease. Annu Rev Biophys Biomol Struct 2006; 35:67–91 [View Article] [PubMed]
    [Google Scholar]
  87. Weidinger K, Neuhäuser B, Gilch S, Ludewig U, Meyer O et al. Functional and physiological evidence for a rhesus-type ammonia transporter in Nitrosomonas europaea. FEMS Microbiol Lett 2007; 273:260–267 [View Article] [PubMed]
    [Google Scholar]
  88. Cherif-Zahar B, Durand A, Schmidt I, Hamdaoui N, Matic I et al. Evolution and functional characterization of the RH50 gene from the ammonia-oxidizing bacterium Nitrosomonas europaea. J Bacteriol 2007; 189:9090–9100 [View Article] [PubMed]
    [Google Scholar]
  89. Soupene E, King N, Feild E, Liu P, Niyogi KK et al. Rhesus expression in a green alga is regulated by CO(2). Proc Natl Acad Sci 2002; 99:7769–7773 [View Article] [PubMed]
    [Google Scholar]
  90. Endeward V, Cartron J-P, Ripoche P, Gros G. Red cell membrane CO2 permeability in normal human blood and in blood deficient in various blood groups, and effect of DIDS. Transfus Clin Biol 2006; 13:123–127 [View Article] [PubMed]
    [Google Scholar]
  91. Endeward V, Cartron JP, Ripoche P, Gros G. RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J 2008; 22:64–73 [View Article] [PubMed]
    [Google Scholar]
  92. Musa-Aziz R, Chen L-M, Pelletier MF, Boron WF. Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci 2009; 106:5406–5411 [View Article] [PubMed]
    [Google Scholar]
  93. Missner A, Kügler P, Saparov SM, Sommer K, Mathai JC et al. Carbon dioxide transport through membranes. J Biol Chem 2008; 283:25340–25347 [View Article] [PubMed]
    [Google Scholar]
  94. Hoyhtya HJ, Koster HJ, Christiansen MM, Akgun U. Human RhCG ammonia conduction mechanism. CMB 2020; 10:81–94 [View Article]
    [Google Scholar]
  95. Caner T, Abdulnour-Nakhoul S, Brown K, Islam MT, Hamm LL et al. Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins. Am J Physiol Cell Physiol 2015; 309:C747–58 [View Article] [PubMed]
    [Google Scholar]
  96. Neuhäuser B, Dynowski M, Ludewig U. Switching substrate specificity of AMT/MEP/ Rh proteins. Channels 2014; 8:496–502 [View Article] [PubMed]
    [Google Scholar]
  97. Boogerd FC, Ma H, Bruggeman FJ, van Heeswijk WC, García-Contreras R et al. AmtB-mediated NH 3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH4+/NH3. FEBS Lett 2011; 585:23–28 [View Article]
    [Google Scholar]
  98. Wacker T, Garcia-Celma JJ, Lewe P, Andrade SLA. Direct observation of electrogenic NH4(+) transport in ammonium transport (Amt) proteins. Proc Natl Acad Sci 2014; 111:9995–10000 [View Article] [PubMed]
    [Google Scholar]
  99. Mirandela GD, Tamburrino G, Hoskisson PA, Zachariae U, Javelle A. The lipid environment determines the activity of the Escherichia coli ammonium transporter AmtB. FASEB J 2019; 33:1989–1999 [View Article] [PubMed]
    [Google Scholar]
  100. Ariz I, Boeckstaens M, Gouveia C, Martins AP, Sanz-Luque E et al. Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily. Sci Adv 2018; 4:eaar3599 [View Article]
    [Google Scholar]
  101. Bostick DL, Iii CLB, Bourne PE. Deprotonation by dehydration: the origin of ammonium sensing in the AmtB channel. PLoS Comput Biol 2007; 3:e22 [View Article]
    [Google Scholar]
  102. Bostick DL, Brooks CL. On the equivalence point for ammonium (de)protonation during its transport through the AmtB channel. Biophys J 2007; 92:L103–5 [View Article] [PubMed]
    [Google Scholar]
  103. Ishikita H, Knapp EW. Protonation states of ammonia/ammonium in the hydrophobic pore of ammonia transporter protein AmtB. J Am Chem Soc 2007; 129:1210–1215 [View Article] [PubMed]
    [Google Scholar]
  104. Marini AM, Boeckstaens M, Benjelloun F, Chérif-Zahar B, André B. Structural involvement in substrate recognition of an essential aspartate residue conserved in Mep/Amt and Rh-type ammonium transporters. Curr Genet 2006; 49:364–374 [View Article] [PubMed]
    [Google Scholar]
  105. Wang J, Fulford T, Shao Q, Javelle A, Yang H et al. Ammonium transport proteins with changes in one of the conserved pore histidines have different performance in ammonia and methylamine conduction. PLoS One 2013; 8:e62745 [View Article]
    [Google Scholar]
  106. Akgun U, Khademi S. Periplasmic vestibule plays an important role for solute recruitment, selectivity, and gating in the Rh/Amt/MEP superfamily. Proc Natl Acad Sci 2011; 108:3970–3975 [View Article]
    [Google Scholar]
  107. Luzhkov VB, Almlöf M, Nervall M, Aqvist J. Computational study of the binding affinity and selectivity of the bacterial ammonium transporter AmtB. Biochemistry 2006; 45:10807–10814 [View Article] [PubMed]
    [Google Scholar]
  108. Lin Y, Cao Z, Mo Y. Molecular dynamics simulations on the Escherichia coli ammonia channel protein AmtB: mechanism of ammonia/ammonium transport. J Am Chem Soc 2006; 128:10876–10884 [View Article] [PubMed]
    [Google Scholar]
  109. Lin Y, Cao Z, Mo Y. Functional role of Asp160 and the deprotonation mechanism of ammonium in the Escherichia coli ammonia channel protein AmtB. J Phys Chem B 2009; 113:4922–4929 [View Article]
    [Google Scholar]
  110. Nygaard TP, Rovira C, Peters GH, Jensen . Ammonium recruitment and ammonia transport by E. coli ammonia channel AmtB. Biophys J 2006; 91:4401–4412 [View Article] [PubMed]
    [Google Scholar]
  111. Lamoureux G, Klein ML, Bernèche S. A stable water chain in the hydrophobic pore of the AmtB ammonium transporter. Biophys J 2007; 92:L82–4 [View Article] [PubMed]
    [Google Scholar]
  112. Cukierman S. Et tu, Grotthuss! and other unfinished stories. Biochim Biophys Acta 2006; 1757:876–885 [View Article] [PubMed]
    [Google Scholar]
  113. DeCoursey TE, Cherny VV. Deuterium isotope effects on permeation and gating of proton channels in rat alveolar epithelium. J Gen Physiol 1997; 109:415–434 [View Article] [PubMed]
    [Google Scholar]
  114. Brito AS, Neuhäuser B, Wintjens R, Marini AM, Boeckstaens M et al. Yeast filamentation signaling is connected to a specific substrate translocation mechanism of the Mep2 transceptor. PLoS Genet 2020; 16:e1008634 [View Article]
    [Google Scholar]
  115. Hao DL, Zhou JY, Yang SY, Qi W, Yang KJ et al. Function and regulation of ammonium transporters in plants. Int J Mol Sci 2020; 21:3557 [View Article] [PubMed]
    [Google Scholar]
  116. Ludewig U, Neuhäuser B, Dynowski M. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett 2007; 581:2301–2308 [View Article] [PubMed]
    [Google Scholar]
  117. Mouro-Chanteloup I, Cochet S, Chami M, Genetet S, Zidi-Yahiaoui N et al. Functional reconstitution into liposomes of purified human RhCG ammonia channel. PLoS One 2010; 5:e8921 [View Article] [PubMed]
    [Google Scholar]
  118. Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y et al. Human Rhesus-associated glycoprotein mediates facilitated transport of NH(3) into red blood cells. Proc Natl Acad Sci 2004; 101:17222–17227 [View Article] [PubMed]
    [Google Scholar]
  119. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 2016; 44:W344–50 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001360
Loading
/content/journal/micro/10.1099/mic.0.001360
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error