1887

Abstract

The type IX secretion system (T9SS) is a multiprotein machine distributed in and responsible for the secretion of various proteins across the outer membrane. Secreted effectors can be either delivered into the medium or anchored to the cell surface. The T9SS is composed of a transenvelope complex consisting of proton-motive force-dependent motors connected to a membrane-associated ring and outer membrane translocons, and a cell-surface anchoring complex that processes effectors once translocated. The T9SS is involved in pathogenesis, metal acquisition, carbohydrate degradation, S-layer biogenesis and gliding motility. The broad spectrum of functions is linked to a highly versatile repertoire of effectors including metallophores, enzymes, toxins and adhesins, that all possess specific signatures to be recruited and transported by the apparatus. This review summarizes the current knowledge on T9SS substrate secretion signals, transport, processing and activities.

Funding
This study was supported by the:
  • A*MIDEX (Award A-M-AAP-ID-17-33-170301-07.22)
    • Principle Award Recipient: EricCascales
  • Institut des sciences biologiques (Award DBM2021)
    • Principle Award Recipient: ThierryDoan
  • Agence Nationale de la Recherche (Award ANR-20-CE11-0011)
    • Principle Award Recipient: EricCascales
  • Agence Nationale de la Recherche (Award ANR-15-CE11-0019)
    • Principle Award Recipient: EricCascales
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001320
2023-04-12
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/4/mic001320.html?itemId=/content/journal/micro/10.1099/mic.0.001320&mimeType=html&fmt=ahah

References

  1. Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): highlights and recent insights into its structure and function. Front Cell Infect Microbiol 2017; 7:215 [View Article] [PubMed]
    [Google Scholar]
  2. Veith PD, Glew MD, Gorasia DG, Reynolds EC. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers. Mol Microbiol 2017; 106:35–53 [View Article] [PubMed]
    [Google Scholar]
  3. McBride MJ, Sandkvist M, Cascales E, Christie PJ. Bacteroidetes gliding motility and the type IX secretion system. Microbiol Spectr 2019; 7:SIB–0002 [View Article]
    [Google Scholar]
  4. Gorasia DG, Veith PD, Reynolds EC. The type IX secretion system: advances in structure, function and organisation. Microorganisms 2020; 8:1173 [View Article] [PubMed]
    [Google Scholar]
  5. Veith PD, Glew MD, Gorasia DG, Cascales E, Reynolds EC. The type IX secretion system and its role in bacterial function and pathogenesis. J Dent Res 2022; 101:374–383 [View Article] [PubMed]
    [Google Scholar]
  6. McBride MJ, Zhu Y. Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol 2013; 195:270–278 [View Article] [PubMed]
    [Google Scholar]
  7. Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M et al. A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 2010; 107:276–281 [View Article] [PubMed]
    [Google Scholar]
  8. Nakane D, Sato K, Wada H, McBride MJ, Nakayama K. Helical flow of surface protein required for bacterial gliding motility. Proc Natl Acad Sci U S A 2013; 110:11145–11150 [View Article] [PubMed]
    [Google Scholar]
  9. Kharade SS, McBride MJ. Flavobacterium johnsoniae chitinase ChiA is required for chitin utilization and is secreted by the type IX secretion system. J Bacteriol 2014; 196:961–970 [View Article] [PubMed]
    [Google Scholar]
  10. Tomek MB, Neumann L, Nimeth I, Koerdt A, Andesner P et al. The S-layer proteins of Tannerella forsythia are secreted via a type IX secretion system that is decoupled from protein O-glycosylation. Mol Oral Microbiol 2014; 29:307–320 [View Article] [PubMed]
    [Google Scholar]
  11. Nan B, McBride MJ, Chen J, Zusman DR, Oster G. Bacteria that glide with helical tracks. Curr Biol 2014; 24:R169–R173 [View Article] [PubMed]
    [Google Scholar]
  12. Larsbrink J, McKee LS. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. Adv Appl Microbiol 2020; 110:63–98 [View Article] [PubMed]
    [Google Scholar]
  13. Vincent MS, Canestrari MJ, Leone P, Stathopulos J, Ize B et al. Characterization of the Porphyromonas gingivalis type IX secretion trans-envelope PorKLMNP core complex. J Biol Chem 2017; 292:3252–3261 [View Article] [PubMed]
    [Google Scholar]
  14. Hennell James R, Deme JC, Kjӕr A, Alcock F, Silale A et al. Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat Microbiol 2021; 6:221–233 [View Article] [PubMed]
    [Google Scholar]
  15. Hennell James R, Deme JC, Hunter A, Berks BC, Lea SM. Structures of the type IX secretion/gliding motility motor from across the phylum Bacteroidetes. mBio 2022; 13:e0026722 [View Article] [PubMed]
    [Google Scholar]
  16. Leone P, Roche J, Vincent MS, Tran QH, Desmyter A et al. Type IX secretion system PorM and gliding machinery GldM form arches spanning the periplasmic space. Nat Commun 2018; 9:429 [View Article] [PubMed]
    [Google Scholar]
  17. Sato K, Okada K, Nakayama K, Imada K. PorM, a core component of bacterial type IX secretion system, forms a dimer with a unique kinked-rod shape. Biochem Biophys Res Commun 2020; 532:114–119 [View Article] [PubMed]
    [Google Scholar]
  18. Ridgway HF. Source of energy for gliding motility in Flexibacter polymorphus : effects of metabolic and respiratory inhibitors on gliding movement. J Bacteriol 1977; 131:544–556 [View Article] [PubMed]
    [Google Scholar]
  19. Vincent MS, Comas Hervada C, Sebban-Kreuzer C, Le Guenno H, Chabalier M et al. Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLoS Biol 2022; 20:e3001443 [View Article] [PubMed]
    [Google Scholar]
  20. Song L, Perpich JD, Wu C, Doan T, Nowakowska Z et al. A unique bacterial secretion machinery with multiple secretion centers. Proc Natl Acad Sci U S A 2022; 119:e2119907119 [View Article] [PubMed]
    [Google Scholar]
  21. Gorasia DG, Veith PD, Hanssen EG, Glew MD, Sato K et al. Structural insights into the PorK and PorN components of the Porphyromonas gingivalis type IX secretion system. PLoS Pathog 2016; 12:e1005820 [View Article] [PubMed]
    [Google Scholar]
  22. Braun TF, McBride MJ. Flavobacterium johnsoniae GldJ is a lipoprotein that is required for gliding motility. J Bacteriol 2005; 187:2628–2637 [View Article] [PubMed]
    [Google Scholar]
  23. Rhodes RG, Samarasam MN, Shrivastava A, van Baaren JM, Pochiraju S et al. Flavobacterium johnsoniae gldN and gldO are partially redundant genes required for gliding motility and surface localization of SprB. J Bacteriol 2010; 192:1201–1211 [View Article] [PubMed]
    [Google Scholar]
  24. Johnston JJ, Shrivastava A, McBride MJ. Untangling Flavobacterium johnsoniae gliding motility and protein secretion. J Bacteriol 2018; 200:e00362-17 [View Article] [PubMed]
    [Google Scholar]
  25. Fuchsbauer O, Lunar Silva I, Cascales E, Roussel A, Leone P. Structural and functional analyses of the Porphyromonas gingivalis type IX secretion system PorN protein. J Biol Chem 2022; 298:101618 [View Article] [PubMed]
    [Google Scholar]
  26. Lauber F, Deme JC, Lea SM, Berks BC. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 2018; 564:77–82 [View Article] [PubMed]
    [Google Scholar]
  27. Glew MD, Veith PD, Chen D, Gorasia DG, Peng B et al. PorV is an outer membrane shuttle protein for the type IX secretion system. Sci Rep 2017; 7:8790 [View Article] [PubMed]
    [Google Scholar]
  28. Dorgan B, Liu Y, Wang S, Aduse-Opoku J, Whittaker SB-M et al. Structural model of a Porphyromonas gingivalis type IX secretion system shuttle complex. J Mol Biol 2022; 434:167871 [View Article] [PubMed]
    [Google Scholar]
  29. Gorasia DG, Lunar Silva I, Butler CA, Chabalier M, Doan T et al. Protein interactome analysis of the type IX secretion system identifies PorW as the missing link between the PorK/N Ring complex and the Sov translocon. Microbiol Spectr 2022; 10:e0160221 [View Article] [PubMed]
    [Google Scholar]
  30. Glew MD, Veith PD, Peng B, Chen Y-Y, Gorasia DG et al. PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. J Biol Chem 2012; 287:24605–24617 [View Article] [PubMed]
    [Google Scholar]
  31. Gorasia DG, Veith PD, Chen D, Seers CA, Mitchell HA et al. Porphyromonas gingivalis type IX secretion substrates are cleaved and modified by a sortase-like mechanism. PLoS Pathog 2015; 11:e1005152 [View Article] [PubMed]
    [Google Scholar]
  32. Lasica AM, Goulas T, Mizgalska D, Zhou X, de Diego I et al. Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis. Sci Rep 2016; 6:37708 [View Article] [PubMed]
    [Google Scholar]
  33. Madej M, Nowakowska Z, Ksiazek M, Lasica AM, Mizgalska D et al. PorZ, an essential component of the type IX secretion system of Porphyromonas gingivalis, delivers anionic lipopolysaccharide to the PorU sortase for transpeptidase processing of T9SS cargo proteins. mBio 2021; 12:e02262-20 [View Article] [PubMed]
    [Google Scholar]
  34. Mizgalska D, Goulas T, Rodríguez-Banqueri A, Veillard F, Madej M et al. Intermolecular latency regulates the essential C-terminal signal peptidase and sortase of the Porphyromonas gingivalis type-IX secretion system. Proc Natl Acad Sci U S A 2021; 118:e2103573118 [View Article] [PubMed]
    [Google Scholar]
  35. Gorasia DG, Veith PD, Reynolds EC. Protein interactome mapping of Porphyromonas gingivalis provides insights into the formation of the PorQ-Z complex of the type IX secretion system. Mol Oral Microbiol 2023; 38:34–40 [View Article] [PubMed]
    [Google Scholar]
  36. Hunnicutt DW, Kempf MJ, McBride MJ. Mutations in Flavobacterium johnsoniae gldF and gldG disrupt gliding motility and interfere with membrane localization of GldA. J Bacteriol 2002; 184:2370–2378 [View Article] [PubMed]
    [Google Scholar]
  37. Braun TF, Khubbar MK, Saffarini DA, McBride MJ. Flavobacterium johnsoniae gliding motility genes identified by mariner mutagenesis. J Bacteriol 2005; 187:6943–6952 [View Article] [PubMed]
    [Google Scholar]
  38. McBride MJ, Braun TF. GldI is a lipoprotein that is required for Flavobacterium johnsoniae gliding motility and chitin utilization. J Bacteriol 2004; 186:2295–2302 [View Article] [PubMed]
    [Google Scholar]
  39. McBride MJ, Braun TF, Brust JL. Flavobacterium johnsoniae GldH is a lipoprotein that is required for gliding motility and chitin utilization. J Bacteriol 2003; 185:6648–6657 [View Article] [PubMed]
    [Google Scholar]
  40. Rhodes RG, Nelson SS, Pochiraju S, McBride MJ. Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J Bacteriol 2011; 193:599–610 [View Article] [PubMed]
    [Google Scholar]
  41. Rhodes RG, Pucker HG, McBride MJ. Development and use of a gene deletion strategy for Flavobacterium johnsoniae to identify the redundant gliding motility genes remF, remG, remH, and remI. J Bacteriol 2011; 193:2418–2428 [View Article] [PubMed]
    [Google Scholar]
  42. McBride MJ, Nakane D. Flavobacterium gliding motility and the type IX secretion system. Curr Opin Microbiol 2015; 28:72–77 [View Article] [PubMed]
    [Google Scholar]
  43. Mikolajczyk J, Boatright KM, Stennicke HR, Nazif T, Potempa J et al. Sequential autolytic processing activates the zymogen of Arg-gingipain. J Biol Chem 2003; 278:10458–10464 [View Article] [PubMed]
    [Google Scholar]
  44. Veillard F, Sztukowska M, Mizgalska D, Ksiazek M, Houston J et al. Inhibition of gingipains by their profragments as the mechanism protecting Porphyromonas gingivalis against premature activation of secreted proteases. Biochim Biophys Acta 2013; 1830:4218–4228 [View Article] [PubMed]
    [Google Scholar]
  45. de Diego I, Veillard FT, Guevara T, Potempa B, Sztukowska M et al. Porphyromonas gingivalis virulence factor gingipain RgpB shows a unique zymogenic mechanism for cysteine peptidases. J Biol Chem 2013; 288:14287–14296 [View Article] [PubMed]
    [Google Scholar]
  46. Veith PD, Nor Muhammad NA, Dashper SG, Likić VA, Gorasia DG et al. Protein substrates of a novel secretion system are numerous in the Bacteroidetes phylum and have in common a cleavable C-terminal secretion signal, extensive post-translational modification, and cell-surface attachment. J Proteome Res 2013; 12:4449–4461 [View Article] [PubMed]
    [Google Scholar]
  47. Shoji M, Sato K, Yukitake H, Kondo Y, Narita Y et al. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS One 2011; 6:e21372 [View Article] [PubMed]
    [Google Scholar]
  48. Kulkarni SS, Zhu Y, Brendel CJ, McBride MJ. Diverse C-terminal sequences involved in Flavobacterium johnsoniae protein secretion. J Bacteriol 2017; 199:e00884-16 [View Article] [PubMed]
    [Google Scholar]
  49. Kulkarni SS, Johnston JJ, Zhu Y, Hying ZT, McBride MJ. The carboxy-terminal region of Flavobacterium johnsoniae SprB facilitates Its secretion by the type IX secretion system and propulsion by the gliding motility machinery. J Bacteriol 2019; 201:e00218-19 [View Article] [PubMed]
    [Google Scholar]
  50. Thunes NC, Conrad RA, Mohammed HH, Zhu Y, Barbier P et al. Type IX secretion system effectors and virulence of the model Flavobacterium columnare strain MS-FC-4. Appl Environ Microbiol 2022; 88:e0170521 [View Article] [PubMed]
    [Google Scholar]
  51. Seers CA, Slakeski N, Veith PD, Nikolof T, Chen Y-Y et al. The RgpB C-terminal domain has a role in attachment of RgpB to the outer membrane and belongs to a novel C-terminal-domain family found in Porphyromonas gingivalis. J Bacteriol 2006; 188:6376–6386 [View Article] [PubMed]
    [Google Scholar]
  52. Nguyen K-A, Travis J, Potempa J. Does the importance of the C-terminal residues in the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein export in a subgroup of Gram-negative bacteria?. J Bacteriol 2007; 189:833–843 [View Article] [PubMed]
    [Google Scholar]
  53. de Diego I, Ksiazek M, Mizgalska D, Koneru L, Golik P et al. The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain. Sci Rep 2016; 6:23123 [View Article] [PubMed]
    [Google Scholar]
  54. Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M et al. Immunoglobulin-like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64–81 [View Article] [PubMed]
    [Google Scholar]
  55. Vincent MS, Chabalier M, Cascales E. A conserved motif of Porphyromonas type IX secretion effectors C-terminal secretion signal specifies interactions with the PorKLMN core complex. BioRxiv 2018; 483123
    [Google Scholar]
  56. Gorasia DG, Seers CA, Heath JE, Glew MD, Soleimaninejad H et al. Type B CTD proteins secreted by the type IX secretion system associate with PorP-like proteins for cell surface anchorage. Int J Mol Sci 2022; 23:5681 [View Article] [PubMed]
    [Google Scholar]
  57. Heath JE, Seers CA, Veith PD, Butler CA, Nor Muhammad NA et al. PG1058 is a novel multidomain protein component of the bacterial type IX secretion system. PLoS One 2016; 11:e0164313 [View Article] [PubMed]
    [Google Scholar]
  58. Trinh NTT, Tran HQ, Van Dong Q, Cambillau C, Roussel A et al. Crystal structure of Type IX secretion system PorE C-terminal domain from Porphyromonas gingivalis in complex with a peptidoglycan fragment. Sci Rep 2020; 10:7384 [View Article] [PubMed]
    [Google Scholar]
  59. Veith PD, Shoji M, O’Hair RAJ, Leeming MG, Nie S et al. Type IX secretion system cargo proteins are glycosylated at the C terminus with a novel linking sugar of the Wbp/Vim pathway. mBio 2020; 11:e01497-20 [View Article] [PubMed]
    [Google Scholar]
  60. Veillard F, Sztukowska M, Nowakowska Z, Mizgalska D, Thøgersen IB et al. Proteolytic processing and activation of gingipain zymogens secreted by T9SS of Porphyromonas gingivalis. Biochimie 2019; 166:161–172 [View Article] [PubMed]
    [Google Scholar]
  61. Zhu Y, McBride MJ. Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Appl Microbiol Biotechnol 2014; 98:763–775 [View Article] [PubMed]
    [Google Scholar]
  62. Zhu Y, McBride MJ. The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2017; 101:7113–7127 [View Article] [PubMed]
    [Google Scholar]
  63. Gao L, Su Y, Song W, Zhang W, Qi Q et al. A type IX secretion system substrate involved in crystalline cellulose degradation by affecting crucial cellulose binding proteins in Cytophaga hutchinsonii. Appl Environ Microbiol 2022; 88:e0183721 [View Article] [PubMed]
    [Google Scholar]
  64. Xie S, Huang Q, Tan R, Zhang W, Qi Q et al. Glycosyltransferase-related protein GtrA is essential for localization of type IX secretion system cargo protein cellulase Cel9A and affects cellulose degradation in Cytophaga hutchinsonii. Appl Environ Microbiol 2022; 88:e0107622 [View Article] [PubMed]
    [Google Scholar]
  65. Xie S, Tan Y, Song W, Zhang W, Qi Q et al. N-Glycosylation of a cargo protein C-terminal domain recognized by the type IX secretion system in Cytophaga hutchinsonii affects protein secretion and localization. Appl Environ Microbiol 2022; 88:e0160621 [View Article] [PubMed]
    [Google Scholar]
  66. Nowakowska Z, Madej M, Grad S, Wang T, Hackett M et al. Phosphorylation of major Porphyromonas gingivalis virulence factors is crucial for their processing and secretion. Mol Oral Microbiol 2021; 36:316–326 [View Article] [PubMed]
    [Google Scholar]
  67. Nakayama K. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility. J Periodontal Res 2015; 50:1–8 [View Article] [PubMed]
    [Google Scholar]
  68. Chen T, Dong H, Yong R, Duncan MJ. Pleiotropic pigmentation mutants of Porphyromonas gingivalis. Microb Pathog 2000; 28:235–247 [View Article] [PubMed]
    [Google Scholar]
  69. Uitto VJ, Larjava H, Heino J, Sorsa T. A protease of Bacteroides gingivalis degrades cell surface and matrix glycoproteins of cultured gingival fibroblasts and induces secretion of collagenase and plasminogen activator. Infect Immun 1989; 57:213–218 [View Article] [PubMed]
    [Google Scholar]
  70. de Diego I, Veillard F, Sztukowska MN, Guevara T, Potempa B et al. Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. J Biol Chem 2014; 289:32291–32302 [View Article] [PubMed]
    [Google Scholar]
  71. Chen Y-Y, Peng B, Yang Q, Glew MD, Veith PD et al. The outer membrane protein LptO is essential for the O-deacylation of LPS and the co-ordinated secretion and attachment of A-LPS and CTD proteins in Porphyromonas gingivalis. Mol Microbiol 2011; 79:1380–1401 [View Article] [PubMed]
    [Google Scholar]
  72. Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontology 2000; 54:15–44 [View Article]
    [Google Scholar]
  73. Hočevar K, Potempa J, Turk B. Host cell-surface proteins as substrates of gingipains, the main proteases of Porphyromonas gingivalis. Biol Chem 2018; 399:1353–1361 [View Article] [PubMed]
    [Google Scholar]
  74. Kato T, Tsuda T, Omori H, Kato T, Yoshimori T et al. Maturation of fimbria precursor protein by exogenous gingipains in Porphyromonas gingivalis gingipain-null mutant. FEMS Microbiol Lett 2007; 273:96–102 [View Article] [PubMed]
    [Google Scholar]
  75. Lee JY, Miller DP, Wu L, Casella CR, Hasegawa Y et al. Maturation of the Mfa1 fimbriae in the oral pathogen Porphyromonas gingivalis. Front Cell Infect Microbiol 2018; 8:137 [View Article] [PubMed]
    [Google Scholar]
  76. Shibata S, Shoji M, Okada K, Matsunami H, Matthews MM et al. Structure of polymerized type V pilin reveals assembly mechanism involving protease-mediated strand exchange. Nat Microbiol 2020; 5:830–837 [View Article] [PubMed]
    [Google Scholar]
  77. Hiratsuka K, Kiyama-Kishikawa M, Abiko Y. Hemin-binding protein 35 (HBP35) plays an important role in bacteria-mammalian cells interactions in Porphyromonas gingivalis. Microb Pathog 2010; 48:116–123 [View Article] [PubMed]
    [Google Scholar]
  78. Gully N, Bright R, Marino V, Marchant C, Cantley M et al. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PLoS One 2014; 9:e100838 [View Article] [PubMed]
    [Google Scholar]
  79. Glowczyk I, Wong A, Potempa B, Babyak O, Lech M et al. Inactive gingipains from P. gingivalis selectively skews T cells toward a Th17 phenotype in an IL-6 dependent manner. Front Cell Infect Microbiol 2017; 7:140 [View Article] [PubMed]
    [Google Scholar]
  80. Lunar Silva I, Cascales E. Molecular strategies underlying Porphyromonas gingivalis virulence. J Mol Biol 2021; 433:166836 [View Article] [PubMed]
    [Google Scholar]
  81. Goulas T, Mizgalska D, Garcia-Ferrer I, Kantyka T, Guevara T et al. Structure and mechanism of a bacterial host-protein citrullinating virulence factor, Porphyromonas gingivalis peptidylarginine deiminase. Sci Rep 2015; 5:11969 [View Article] [PubMed]
    [Google Scholar]
  82. Maresz KJ, Hellvard A, Sroka A, Adamowicz K, Bielecka E et al. Porphyromonas gingivalis facilitates the development and progression of destructive arthritis through its unique bacterial peptidylarginine deiminase (PAD). PLoS Pathog 2013; 9:e1003627 [View Article] [PubMed]
    [Google Scholar]
  83. Narita Y, Sato K, Yukitake H, Shoji M, Nakane D et al. Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system. Microbiology 2014; 160:2295–2303 [View Article] [PubMed]
    [Google Scholar]
  84. Li N, Zhu Y, LaFrentz BR, Evenhuis JP, Hunnicutt DW et al. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare. Appl Environ Microbiol 2017; 83:e01769-17 [View Article] [PubMed]
    [Google Scholar]
  85. Guo Y, Hu D, Guo J, Wang T, Xiao Y et al. Riemerella anatipestifer type IX secretion system is required for virulence and gelatinase secretion. Front Microbiol 2017; 8:2553 [View Article] [PubMed]
    [Google Scholar]
  86. Barbier P, Rochat T, Mohammed HH, Wiens GD, Bernardet J-F et al. The type IX secretion system is required for virulence of the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 2020; 86:e00799-20 [View Article] [PubMed]
    [Google Scholar]
  87. McBride MJ. Cytophaga-flavobacterium gliding motility. J Mol Microbiol Biotechnol 2004; 7:63–71 [View Article] [PubMed]
    [Google Scholar]
  88. Nelson SS, Bollampalli S, McBride MJ. SprB is a cell surface component of the Flavobacterium johnsoniae gliding motility machinery. J Bacteriol 2008; 190:2851–2857 [View Article] [PubMed]
    [Google Scholar]
  89. Shrivastava A, Rhodes RG, Pochiraju S, Nakane D, McBride MJ. Flavobacterium johnsoniae RemA is a mobile cell surface lectin involved in gliding. J Bacteriol 2012; 194:3678–3688 [View Article] [PubMed]
    [Google Scholar]
  90. Nelson SS, Glocka PP, Agarwal S, Grimm DP, McBride MJ. Flavobacterium johnsoniae SprA is a cell surface protein involved in gliding motility. J Bacteriol 2007; 189:7145–7150 [View Article] [PubMed]
    [Google Scholar]
  91. Agarwal S, Hunnicutt DW, McBride MJ. Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc Natl Acad Sci U S A 1997; 94:12139–12144 [View Article] [PubMed]
    [Google Scholar]
  92. Hunnicutt DW, McBride MJ. Cloning and characterization of the Flavobacterium johnsoniae gliding-motility genes gldB and gldC. J Bacteriol 2000; 182:911–918 [View Article] [PubMed]
    [Google Scholar]
  93. Hunnicutt DW, McBride MJ. Cloning and characterization of the Flavobacterium johnsoniae gliding motility genes gldD and gldE. J Bacteriol 2001; 183:4167–4175 [View Article] [PubMed]
    [Google Scholar]
  94. Shrivastava A, Roland T, Berg HC. The screw-like movement of a gliding bacterium is powered by spiral motion of cell-surface adhesins. Biophys J 2016; 111:1008–1013 [View Article] [PubMed]
    [Google Scholar]
  95. Wada H, Nakane D, Chen H-Y. Bidirectional bacterial gliding motility powered by the collective transport of cell surface proteins. Phys Rev Lett 2013; 111:248102 [View Article] [PubMed]
    [Google Scholar]
  96. Islam ST, Mignot T. The mysterious nature of bacterial surface (gliding) motility: a focal adhesion-based mechanism in Myxococcus xanthus. Semin Cell Dev Biol 2015; 46:143–154 [View Article] [PubMed]
    [Google Scholar]
  97. Shrivastava A, Johnston JJ, van Baaren JM, McBride MJ. Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J Bacteriol 2013; 195:3201–3212 [View Article] [PubMed]
    [Google Scholar]
  98. Shrivastava A, Lele PP, Berg HC. A rotary motor drives Flavobacterium gliding. Curr Biol 2015; 25:338–341 [View Article] [PubMed]
    [Google Scholar]
  99. Trivedi A, Gosai J, Nakane D, Shrivastava A. Design principles of the rotary type 9 secretion system. Front Microbiol 2022; 13:845563 [View Article] [PubMed]
    [Google Scholar]
  100. Shrivastava A, Berg HC. Towards a model for Flavobacterium gliding. Curr Opin Microbiol 2015; 28:93–97 [View Article] [PubMed]
    [Google Scholar]
  101. Shrivastava A, Berg HC. A molecular rack and pinion actuates a cell-surface adhesin and enables bacterial gliding motility. Sci Adv 2020; 6:eaay6616 [View Article] [PubMed]
    [Google Scholar]
  102. Shibata S, Tahara YO, Katayama E, Kawamoto A, Kato T et al. Filamentous structures in the cell envelope are associated with Bacteroidetes gliding machinery. Commun Biol 2023; 6:94 [View Article] [PubMed]
    [Google Scholar]
  103. Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2011; 2:93 [View Article] [PubMed]
    [Google Scholar]
  104. Ramos KRM, Valdehuesa KNG, Bañares AB, Nisola GM, Lee W-K et al. Overexpression and characterization of a novel GH16 β-agarase (Aga1) from Cellulophaga omnivescoria W5C. Biotechnol Lett 2020; 42:2231–2238 [View Article] [PubMed]
    [Google Scholar]
  105. McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB et al. Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. Environ Microbiol Rep 2021; 13:559–581 [View Article] [PubMed]
    [Google Scholar]
  106. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC et al. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 2007; 73:3536–3546 [View Article] [PubMed]
    [Google Scholar]
  107. Vera-Ponce de León A, Jahnes BC, Duan J, Camuy-Vélez LA, Sabree ZL. Cultivable, host-specific Bacteroidetes symbionts exhibit diverse polysaccharolytic strategies. Appl Environ Microbiol 2020; 86:e00091-20 [View Article] [PubMed]
    [Google Scholar]
  108. Kolton M, Frenkel O, Elad Y, Cytryn E. Potential role of Flavobacterial gliding-motility and type IX secretion system complex in root colonization and plant defense. Mol Plant Microbe Interact 2014; 27:1005–1013 [View Article] [PubMed]
    [Google Scholar]
  109. Zhu Y, Han L, Hefferon KL, Silvaggi NR, Wilson DB et al. Periplasmic Cytophaga hutchinsonii endoglucanases are required for use of crystalline cellulose as the sole source of carbon and energy. Appl Environ Microbiol 2016; 82:4835–4845 [View Article] [PubMed]
    [Google Scholar]
  110. Gerbino E, Carasi P, Mobili P, Serradell MA, Gómez-Zavaglia A. Role of S-layer proteins in bacteria. World J Microbiol Biotechnol 2015; 31:1877–1887 [View Article] [PubMed]
    [Google Scholar]
  111. Bharat TAM, von Kügelgen A, Alva V. Molecular logic of prokaryotic surface layer structures. Trends Microbiol 2021; 29:405–415 [View Article] [PubMed]
    [Google Scholar]
  112. Ravi J, Fioravanti A. S-layers: the proteinaceous multifunctional armors of Gram-positive pathogens. Front Microbiol 2021; 12:663468 [View Article] [PubMed]
    [Google Scholar]
  113. Messner P, Schäffer C, Kosma P. Bacterial cell-envelope glycoconjugates. Adv Carbohydr Chem Biochem 2013; 69:209–272 [View Article] [PubMed]
    [Google Scholar]
  114. Sleytr UB, Schuster B, Egelseer E-M, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823–864 [View Article] [PubMed]
    [Google Scholar]
  115. Posch G, Pabst M, Brecker L, Altmann F, Messner P et al. Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J Biol Chem 2011; 286:38714–38724 [View Article] [PubMed]
    [Google Scholar]
  116. Sabet M, Lee SW, Nauman RK, Sims T, Um H-S. The surface (S-) layer is a virulence factor of Bacteroides forsythus. Microbiology 2003; 149:3617–3627 [View Article] [PubMed]
    [Google Scholar]
  117. Sakakibara J, Nagano K, Murakami Y, Higuchi N, Nakamura H et al. Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. Microbiology 2007; 153:866–876 [View Article] [PubMed]
    [Google Scholar]
  118. Bloch S, Thurnheer T, Murakami Y, Belibasakis GN, Schäffer C. Behavior of two Tannerella forsythia strains and their cell surface mutants in multispecies oral biofilms. Mol Oral Microbiol 2017; 32:404–418 [View Article] [PubMed]
    [Google Scholar]
  119. Hiratsuka K, Hayakawa M, Kiyama-Kishikawa M, Sasaki Y, Hirai T et al. Role of the hemin-binding protein 35 (HBP35) of Porphyromonas gingivalis in coaggregation. Microb Pathog 2008; 44:320–328 [View Article] [PubMed]
    [Google Scholar]
  120. Shoji M, Shibata Y, Shiroza T, Yukitake H, Peng B et al. Characterization of hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis: its cellular distribution, thioredoxin activity and role in heme utilization. BMC Microbiol 2010; 10:152 [View Article] [PubMed]
    [Google Scholar]
  121. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL. Microbial complexes in subgingival plaque. J Clin Periodontol 1998; 25:134–144 [View Article] [PubMed]
    [Google Scholar]
  122. Byrne DP, Potempa J, Olczak T, Smalley JW. Evidence of mutualism between two periodontal pathogens: co-operative haem acquisition by the HmuY haemophore of Porphyromonas gingivalis and the cysteine protease interpain A (InpA) of Prevotella intermedia. Mol Oral Microbiol 2013; 28:219–229 [View Article] [PubMed]
    [Google Scholar]
  123. Hudson J, Kumar V, Egan S. Comparative genome analysis provides novel insight into the interaction of Aquimarina sp. AD1, BL5 and AD10 with their macroalgal host. Mar Genomics 2019; 46:8–15 [View Article] [PubMed]
    [Google Scholar]
  124. Hudson J, Egan S. Opportunistic diseases in marine eukaryotes: could Bacteroidota be the next threat to ocean life?. Environ Microbiol 2022; 24:4505–4518 [View Article] [PubMed]
    [Google Scholar]
  125. Astafyeva Y, Gurschke M, Streit WR, Krohn I. Interplay between the microalgae Micrasterias radians and its symbiont Dyadobacter sp. HH091. Front Microbiol 2022; 13:1006609 [View Article]
    [Google Scholar]
  126. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022; 50:W276–W279 [View Article] [PubMed]
    [Google Scholar]
  127. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [View Article] [PubMed]
    [Google Scholar]
  128. Chen Z, Niu P, Ren X, Han W, Shen R et al. Riemerella anatipestifer T9SS effector SspA functions in bacterial virulence and defending natural host immunity. Appl Environ Microbiol 2022; 88:e02409–21 [View Article] [PubMed]
    [Google Scholar]
  129. Niu P, Chen Z, Ren X, Han W, Dong H et al. A Riemerella anatipestifer metallophosphoesterase that displays phosphatase activity and is associated with virulence. Appl Environ Microbiol 2021; 87:e00086–21 [View Article] [PubMed]
    [Google Scholar]
  130. Zhu M, Chen Z, Shen R, Niu P, Feng Y et al. Riemerella anatipestifer AS87_RS02955 acts as a virulence factor and displays endonuclease activity. Appl Environ Microbiol 2022; 88:e01276–22 [View Article] [PubMed]
    [Google Scholar]
  131. Teo SC, Liew KJ, Shamsir MS, Chong CS, Bruce NC et al. Characterizing a halo-tolerant GH10 xylanase from Roseithermus sacchariphilus strain RA and its CBM-truncated variant. IJMS 2019; 20:2284 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001320
Loading
/content/journal/micro/10.1099/mic.0.001320
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error