1887

Abstract

The type three secretion system injectisome of Gram-negative bacterial pathogens injects virulence proteins, called effectors, into host cells. Effectors of mammalian pathogens carry out a range of functions enabling bacterial invasion, replication, immune suppression and transmission. The injectisome secretes two translocon proteins that insert into host cell membranes to form a translocon pore, through which effectors are delivered. A subset of effectors also integrate into infected cell membranes, enabling a unique range of biochemical functions. Both translocon proteins and transmembrane effectors avoid cytoplasmic aggregation and integration into the bacterial inner membrane. Translocated transmembrane effectors locate and integrate into the appropriate host membrane. In this review, we focus on transmembrane translocon proteins and effectors of bacterial pathogens of mammals. We discuss what is known about the mechanisms underlying their membrane integration, as well as the functions conferred by the position of injectisome effectors within membranes.

Funding
This study was supported by the:
  • Wellcome Trust (Award 209411/Z/17/Z)
    • Principle Award Recipient: DavidW. Holden
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001292
2023-01-27
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/1/mic001292.html?itemId=/content/journal/micro/10.1099/mic.0.001292&mimeType=html&fmt=ahah

References

  1. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ et al. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 2017; 15:323–337 [View Article] [PubMed]
    [Google Scholar]
  2. Jennings E, Thurston TLM, Holden DW. Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 2017; 22:217–231 [View Article]
    [Google Scholar]
  3. Elwell C, Mirrashidi K, Engel J. Chlamydia cell biology and pathogenesis. Nat Rev Microbiol 2016; 14:385–400 [View Article]
    [Google Scholar]
  4. Park D, Lara-Tejero M, Waxham MN, Li W, Hu B et al. Visualization of the type III secretion mediated Salmonella-host cell interface using cryo-electron tomography. Elife 2018; 7:1–15
    [Google Scholar]
  5. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H et al. Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 2001; 3:669–679 [View Article]
    [Google Scholar]
  6. Blocker A, Gounon P, Larquet E, Niebuhr K, Cabiaux V et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol 1999; 147:683–693 [View Article]
    [Google Scholar]
  7. Matteï P-J, Faudry E, Job V, Izoré T, Attree I et al. Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 2011; 278:414–426 [View Article]
    [Google Scholar]
  8. Escoll P, Mondino S, Rolando M, Buchrieser C. Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 2016; 14:5–19 [View Article]
    [Google Scholar]
  9. Hicks SW, Galán JE. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat Rev Microbiol 2013; 11:316–326 [View Article]
    [Google Scholar]
  10. Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F et al. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 2000; 101:353–363 [View Article]
    [Google Scholar]
  11. Domingues L, Ismail A, Charro N, Rodríguez-Escudero I, Holden DW et al. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells. Cell Microbiol 2016; 18:949–969 [View Article] [PubMed]
    [Google Scholar]
  12. Krampen L, Malmsheimer S, Grin I, Trunk T, Lührmann A et al. Revealing the mechanisms of membrane protein export by virulence-associated bacterial secretion systems. Nat Commun 2018; 9:3467 [View Article]
    [Google Scholar]
  13. Schibich D, Gloge F, Pöhner I, Björkholm P, Wade RC et al. Global profiling of SRP interaction with nascent polypeptides. Nature 2016; 536:219–223 [View Article] [PubMed]
    [Google Scholar]
  14. Driessen AJM, Nouwen N. Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 2008; 77:643–667 [View Article] [PubMed]
    [Google Scholar]
  15. Parsot C, Hamiaux C, Page A-L. The various and varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol 2003; 6:7–14 [View Article]
    [Google Scholar]
  16. Stebbins CE, Galán JE. Priming virulence factors for delivery into the host. Nat Rev Mol Cell Biol 2003; 4:738–743 [View Article]
    [Google Scholar]
  17. Job V, Matteï P-J, Lemaire D, Attree I, Dessen A. Structural basis of chaperone recognition of type III secretion system minor translocator proteins. J Biol Chem 2010; 285:23224–23232 [View Article]
    [Google Scholar]
  18. Lunelli M, Lokareddy RK, Zychlinsky A, Kolbe M. IpaB-IpgC interaction defines binding motif for type III secretion translocator. Proc Natl Acad Sci 2009; 106:9661–9666 [View Article]
    [Google Scholar]
  19. Schreiner M, Niemann HH. Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycD in complex with a peptide of the minor translocator YopD. BMC Struct Biol 2012; 12:13 [View Article]
    [Google Scholar]
  20. Nguyen VS, Jobichen C, Tan KW, Tan YW, Chan SL et al. Structure of AcrH-AopB chaperone-translocator complex reveals a role for membrane hairpins in type III secretion system translocon assembly. Structure 2015; 23:2022–2031 [View Article]
    [Google Scholar]
  21. Schoehn G, Di Guilmi AM, Lemaire D, Attree I, Weissenhorn W et al. Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas. EMBO J 2003; 22:4957–4967 [View Article]
    [Google Scholar]
  22. Luo Y, Bertero MG, Frey EA, Pfuetzner RA, Wenk MR et al. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat Struct Biol 2001; 8:1031–1036 [View Article]
    [Google Scholar]
  23. Fu Y, Galán JE. Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium. J Bacteriol 1998; 180:3393–3399 [View Article]
    [Google Scholar]
  24. Abe A, de Grado M, Pfuetzner RA, Sánchez-Sanmartín C, Devinney R et al. Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol Microbiol 1999; 33:1162–1175 [View Article]
    [Google Scholar]
  25. Lilic M, Vujanac M, Stebbins CE. A common structural motif in the binding of virulence factors to bacterial secretion chaperones. Mol Cell 2006; 21:653–664 [View Article]
    [Google Scholar]
  26. Dai S, Zhou D. Secretion and function of Salmonella SPI-2 effector SseF require its chaperone, SscB. J Bacteriol 2004; 186:5078–5086 [View Article]
    [Google Scholar]
  27. Godlee C, Cerny O, Durkin CH, Holden DW. SrcA is a chaperone for the Salmonella SPI-2 type three secretion system effector SteD. Microbiology 2019; 165:15–25 [View Article]
    [Google Scholar]
  28. Akeda Y, Okayama K, Kimura T, Dryselius R, Kodama T et al. Identification and characterization of a type III secretion-associated chaperone in the type III secretion system 1 of Vibrio parahaemolyticus. FEMS Microbiol Lett 2009; 296:18–25 [View Article]
    [Google Scholar]
  29. Little DJ, Coombes BK, Derré I. Molecular basis for CesT recognition of type III secretion effectors in enteropathogenic Escherichia coli. PLoS Pathog 2018; 14:e1007224 [View Article]
    [Google Scholar]
  30. Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA et al. A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM. Nat Struct Mol Biol 2020; 27:589–597 [View Article]
    [Google Scholar]
  31. Race PR, Lakey JH, Banfield MJ. Insertion of the enteropathogenic Escherichia coli Tir virulence protein into membranes in vitro. J Biol Chem 2006; 281:7842–7849 [View Article]
    [Google Scholar]
  32. Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 2007; 450:1026–1030 [View Article]
    [Google Scholar]
  33. Tardy F, Homblé F, Neyt C, Wattiez R, Cornelis GR et al. Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops. EMBO J 1999; 18:6793–6799 [View Article]
    [Google Scholar]
  34. Faudry E, Vernier G, Neumann E, Forge V, Attree I. Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa. Biochemistry 2006; 45:8117–8123 [View Article]
    [Google Scholar]
  35. Romano FB, Rossi KC, Savva CG, Holzenburg A, Clerico EM et al. Efficient isolation of Pseudomonas aeruginosa type III secretion translocators and assembly of heteromeric transmembrane pores in model membranes. Biochemistry 2011; 50:7117–7131 [View Article]
    [Google Scholar]
  36. Goure J, Pastor A, Faudry E, Chabert J, Dessen A et al. The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun 2004; 72:4741–4750 [View Article]
    [Google Scholar]
  37. Tang Y, Romano FB, Breña M, Heuck AP. The Pseudomonas aeruginosa type III secretion translocator PopB assists the insertion of the PopD translocator into host cell membranes. J Biol Chem 2018; 293:8982–8993 [View Article] [PubMed]
    [Google Scholar]
  38. Shaw RK, Daniell S, Ebel F, Frankel G, Knutton S. EspA filament-mediated protein translocation into red blood cells. Cell Microbiol 2001; 3:213–222 [View Article]
    [Google Scholar]
  39. Harrington A, Darboe N, Kenjale R, Picking WL, Middaugh CR et al. Characterization of the interaction of single tryptophan containing mutants of IpaC from Shigella flexneri with phospholipid membranes. Biochemistry 2006; 45:626–636 [View Article]
    [Google Scholar]
  40. Hayward RD, McGhie EJ, Koronakis V. Membrane fusion activity of purified SipB, a Salmonella surface protein essential for mammalian cell invasion. Mol Microbiol 2000; 37:727–739 [View Article]
    [Google Scholar]
  41. Hume PJ, McGhie EJ, Hayward RD, Koronakis V. The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology. Mol Microbiol 2003; 49:425–439 [View Article]
    [Google Scholar]
  42. McGhie EJ, Hume PJ, Hayward RD, Torres J, Koronakis V. Topology of the Salmonella invasion protein SipB in a model bilayer. Mol Microbiol 2002; 44:1309–1321 [View Article]
    [Google Scholar]
  43. Chatterjee A, Caballero-Franco C, Bakker D, Totten S, Jardim A. Pore-forming activity of the Escherichia coli type III secretion system protein EspD. J Biol Chem 2015; 290:25579–25594 [View Article]
    [Google Scholar]
  44. Schroeder GN, Hilbi H. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134–156 [View Article]
    [Google Scholar]
  45. Veenendaal AKJ, Hodgkinson JL, Schwarzer L, Stabat D, Zenk SF et al. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 2007; 63:1719–1730 [View Article]
    [Google Scholar]
  46. Guo EZ, Galán JE. Cryo-EM structure of the needle filament tip complex of the Salmonella type III secretion injectisome. Proc Natl Acad Sci 2021; 118:e2114552118 [View Article]
    [Google Scholar]
  47. Sekiya K, Ohishi M, Ogino T, Tamano K, Sasakawa C et al. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci 2001; 98:11638–11643 [View Article]
    [Google Scholar]
  48. Zheng W, Peña A, Ilangovan A, Clark JN-B, Frankel G et al. Cryoelectron-microscopy structure of the enteropathogenic Escherichia coli type III secretion system EspA filament. Proc Natl Acad Sci 2021; 118:e2022826118 [View Article]
    [Google Scholar]
  49. Dickenson NE, Arizmendi O, Patil MK, Toth RT, Middaugh CR et al. N-terminus of IpaB provides a potential anchor to the Shigella type III secretion system tip complex protein IpaD. Biochemistry 2013; 52:8790–8799 [View Article]
    [Google Scholar]
  50. Mueller CA, Broz P, Müller SA, Ringler P, Erne-Brand F et al. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 2005; 310:674–676 [View Article]
    [Google Scholar]
  51. Viala JP, Prima V, Puppo R, Agrebi R, Canestrari MJ et al. Acylation of the type 3 secretion system translocon using a dedicated acyl carrier protein. PLoS Genet 2017; 13:e1006556 [View Article]
    [Google Scholar]
  52. Chen P, Russo BC, Duncan-Lowey JK, Bitar N, Egger KT et al. Topology and contribution to the pore channel lining of plasma membrane-embedded Shigella flexneri type 3 secretion translocase IpaB. mBio 2021; 12:e0302121 [View Article]
    [Google Scholar]
  53. Hayward RD, Cain RJ, McGhie EJ, Phillips N, Garner MJ et al. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 2005; 56:590–603 [View Article]
    [Google Scholar]
  54. van der Goot FG, Tran van Nhieu G, Allaoui A, Sansonetti P, Lafont F. Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J Biol Chem 2004; 279:47792–47798 [View Article]
    [Google Scholar]
  55. Santos AJM, Meinecke M, Fessler MB, Holden DW, Boucrot E. Preferential invasion of mitotic cells by Salmonella reveals that cell surface cholesterol is maximal during metaphase. J Cell Sci 2013; 126:2990–2996 [View Article]
    [Google Scholar]
  56. Discola KF, Förster A, Boulay F, Simorre J-P, Attree I. Membrane and chaperone recognition by the major translocator protein PopB of the type III secretion system of Pseudomonas aeruginosa. J Biol Chem 2014; 289:3591–3601 [View Article]
    [Google Scholar]
  57. Dal Peraro M, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2016; 14:77–92 [View Article]
    [Google Scholar]
  58. Wiener M, Freymann D, Ghosh P, Stroud RM. Crystal structure of colicin Ia. Nature 1997; 385:461–464 [View Article]
    [Google Scholar]
  59. Parker MW, Postma JPM, Pattus F, Tucker AD, Tsernoglou D. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J Mol Biol 1992; 224:639–657 [View Article]
    [Google Scholar]
  60. Russo BC, Duncan JK, Goldberg MB. Topological analysis of the type 3 secretion system translocon pore protein IpaC following its native delivery to the plasma membrane during infection. mBio 2019; 10:1–13 [View Article]
    [Google Scholar]
  61. Kuwae A, Yoshida S, Tamano K, Mimuro H, Suzuki T et al. Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. Functional analysis of IpaC. J Biol Chem 2001; 276:32230–32239 [View Article]
    [Google Scholar]
  62. Myeni SK, Wang L, Zhou D. SipB-SipC complex is essential for translocon formation. PLoS One 2013; 8:e60499 [View Article]
    [Google Scholar]
  63. Montagner C, Arquint C, Cornelis GR. Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. J Bacteriol 2011; 193:6923–6928 [View Article]
    [Google Scholar]
  64. Romano FB, Tang Y, Rossi KC, Monopoli KR, Ross JL et al. Type 3 secretion translocators spontaneously assemble a hexadecameric transmembrane complex. J Biol Chem 2016; 291:6304–6315 [View Article]
    [Google Scholar]
  65. Dey S, Chakravarty A, Guha Biswas P, De Guzman RN. The type III secretion system needle, tip, and translocon. Protein Sci 2019; 28:1582–1593 [View Article] [PubMed]
    [Google Scholar]
  66. Dehoux P, Flores R, Dauga C, Zhong G, Subtil A. Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genomics 2011; 12:109 [View Article] [PubMed]
    [Google Scholar]
  67. Bannantine JP, Griffiths RS, Viratyosin W, Brown WJ, Rockey DD. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell Microbiol 2000; 2:35–47 [View Article]
    [Google Scholar]
  68. Li Z, Chen C, Chen D, Wu Y, Zhong Y et al. Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect Immun 2008; 76:2746–2757 [View Article]
    [Google Scholar]
  69. Monné M, Nilsson I, Elofsson A, von Heijne G. Turns in transmembrane helices: determination of the minimal length of a “helical hairpin” and derivation of a fine-grained turn propensity scale. J Mol Biol 1999; 293:807–814 [View Article]
    [Google Scholar]
  70. Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E et al. X-ray structure of a protein-conducting channel. Nature 2004; 427:36–44 [View Article]
    [Google Scholar]
  71. Guna A, Hegde RS. Transmembrane domain recognition during membrane protein biogenesis and quality control. Curr Biol 2018; 28:R498–R511 [View Article]
    [Google Scholar]
  72. Campellone KG, Rankin S, Pawson T, Kirschner MW, Tipper DJ et al. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J Cell Biol 2004; 164:407–416 [View Article]
    [Google Scholar]
  73. Bayer-Santos E, Durkin CH, Rigano LA, Kupz A, Alix E et al. The Salmonella effector SteD mediates MARCH8-dependent ubiquitination of MHC II molecules and inhibits T cell activation. Cell Host Microbe 2016; 20:584–595 [View Article]
    [Google Scholar]
  74. Salcedo SP, Holden DW. SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J 2003; 22:5003–5014 [View Article]
    [Google Scholar]
  75. Sreelatha A, Bennett TL, Zheng H, Jiang Q-X, Orth K et al. Vibrio effector protein, VopQ, forms a lysosomal gated channel that disrupts host ion homeostasis and autophagic flux. Proc Natl Acad Sci 2013; 110:11559–11564 [View Article]
    [Google Scholar]
  76. de Grado M, Abe A, Gauthier A, Steele-Mortimer O, DeVinney R et al. Identification of the intimin-binding domain of Tir of enteropathogenic Escherichia coli. Cell Microbiol 1999; 1:7–17 [View Article]
    [Google Scholar]
  77. Fischer A, Rudel T. Safe haven under constant attack-The Chlamydia -containing vacuole. Cell Microbiol 2018; 20:e12940 [View Article]
    [Google Scholar]
  78. Kuhle V, Hensel M. SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol 2002; 4:813–824 [View Article]
    [Google Scholar]
  79. Thanabalasuriar A, Bergeron J, Gillingham A, Mimee M, Thomassin J-L et al. Sec24 interaction is essential for localization and virulence-associated function of the bacterial effector protein NleA. Cell Microbiol 2012; 14:1206–1218 [View Article]
    [Google Scholar]
  80. Gruenheid S, Sekirov I, Thomas NA, Deng W, O’Donnell P et al. Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 2004; 51:1233–1249 [View Article]
    [Google Scholar]
  81. Mao C, Gu J, Wang H-G, Fang Y, Yang P et al. Translocation of enterohemorrhagic Escherichia coli effector Tir to the plasma membrane via host Golgi apparatus. Mol Med Rep 2017; 16:1544–1550 [View Article]
    [Google Scholar]
  82. Godlee C, Cerny O, Liu M, Blundell S, Gallagher AE. The Salmonella transmembrane effector SteD hijacks AP1-mediated vesicular trafficking for delivery to antigen-loading MHCII compartments. PLoS Pathog 2022; 18:e1010252 [View Article]
    [Google Scholar]
  83. Schleiff E, Klösgen RB. Without a little help from “my” friends: direct insertion of proteins into chloroplast membranes?. Biochim Biophys Acta 2001; 1541:22–33 [View Article]
    [Google Scholar]
  84. Hayward RD, Koronakis V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J 1999; 18:4926–4934 [View Article]
    [Google Scholar]
  85. Myeni SK, Zhou D. The C terminus of SipC binds and bundles F-actin to promote Salmonella invasion. J Biol Chem 2010; 285:13357–13363 [View Article]
    [Google Scholar]
  86. Zhou D, Mooseker MS, Galán JE. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 1999; 283:2092–2095 [View Article]
    [Google Scholar]
  87. McGhie EJ, Hayward RD, Koronakis V. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J 2001; 20:2131–2139 [View Article]
    [Google Scholar]
  88. Mounier J, Popoff MR, Enninga J, Frame MC, Sansonetti PJ et al. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 2009; 5:e1000271 [View Article]
    [Google Scholar]
  89. Russo BC, Stamm LM, Raaben M, Kim CM, Kahoud E et al. Intermediate filaments enable pathogen docking to trigger type 3 effector translocation. Nat Microbiol 2016; 1:16025 [View Article]
    [Google Scholar]
  90. Alix E, Godlee C, Cerny O, Blundell S, Tocci R et al. The tumour suppressor TMEM127 is a Nedd4-family E3 ligase adaptor required by Salmonella SteD to ubiquitinate and degrade MHC class II molecules. Cell Host Microbe 2020; 28:54–68 [View Article]
    [Google Scholar]
  91. Cerny O, Godlee C, Tocci R, Cross NE, Shi H et al. CD97 stabilises the immunological synapse between dendritic cells and T cells and is targeted for degradation by the Salmonella effector SteD. PLoS Pathog 2021; 17:e1009771 [View Article]
    [Google Scholar]
  92. Helle SCJ, Kanfer G, Kolar K, Lang A, Michel AH et al. Organization and function of membrane contact sites. Biochim Biophys Acta 2013; 1833:2526–2541 [View Article]
    [Google Scholar]
  93. Deiwick J, Salcedo SP, Boucrot E, Gilliland SM, Henry T et al. The translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche. Infect Immun 2006; 74:6965–6972 [View Article]
    [Google Scholar]
  94. Abrahams GL, Müller P, Hensel M. Functional dissection of SseF, a type III effector protein involved in positioning the Salmonella-containing vacuole. Traffic 2006; 7:950–965 [View Article]
    [Google Scholar]
  95. Müller P, Chikkaballi D, Hensel M. Functional dissection of SseF, a membrane-integral effector protein of intracellular Salmonella enterica. PLoS One 2012; 7:e35004 [View Article]
    [Google Scholar]
  96. Yu X-J, Liu M, Holden DW. Salmonella effectors SseF and SseG interact with mammalian protein ACBD3 (GCP60) to anchor Salmonella-containing vacuoles at the Golgi network. mBio 2016; 7:e00474-16 [View Article]
    [Google Scholar]
  97. Stanhope R, Flora E, Bayne C, Derré I. IncV, a FFAT motif-containing Chlamydia protein, tethers the endoplasmic reticulum to the pathogen-containing vacuole. Proc Natl Acad Sci 2017; 114:12039–12044 [View Article]
    [Google Scholar]
  98. Kawano M, Kumagai K, Nishijima M, Hanada K. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J Biol Chem 2006; 281:30279–30288 [View Article]
    [Google Scholar]
  99. Derré I, Swiss R, Agaisse H. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog 2011; 7:e1002092 [View Article]
    [Google Scholar]
  100. Agaisse H, Derré I. Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. Infect Immun 2014; 82:2037–2047 [View Article]
    [Google Scholar]
  101. Kumagai K, Elwell CA, Ando S, Engel JN, Hanada K. Both the N- and C- terminal regions of the Chlamydial inclusion protein D (IncD) are required for interaction with the pleckstrin homology domain of the ceramide transport protein CERT. Biochem Biophys Res Commun 2018; 505:1070–1076 [View Article] [PubMed]
    [Google Scholar]
  102. Elwell CA, Jiang S, Kim JH, Lee A, Wittmann T et al. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog 2011; 7:e1002198 [View Article]
    [Google Scholar]
  103. Elwell CA, Engel JN. Lipid acquisition by intracellular Chlamydiae. Cell Microbiol 2012; 14:1010–1018 [View Article]
    [Google Scholar]
  104. Hackstadt T, Scidmore-Carlson MA, Shaw EI, Fischer ER. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell Microbiol 1999; 1:119–130 [View Article]
    [Google Scholar]
  105. Suchland RJ, Rockey DD, Bannantine JP, Stamm WE. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Infect Immun 2000; 68:360–367 [View Article]
    [Google Scholar]
  106. Jahn R, Scheller RH. SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 2006; 7:631–643 [View Article]
    [Google Scholar]
  107. Delevoye C, Nilges M, Dehoux P, Paumet F, Perrinet S et al. SNARE protein mimicry by an intracellular bacterium. PLoS Pathog 2008; 4:e1000022 [View Article]
    [Google Scholar]
  108. Paumet F, Wesolowski J, Garcia-Diaz A, Delevoye C, Aulner N et al. Intracellular bacteria encode inhibitory SNARE-like proteins. PLoS One 2009; 4:e7375 [View Article]
    [Google Scholar]
  109. Weber MM, Noriea NF, Bauler LD, Lam JL, Sager J et al. A functional core of IncA is required for Chlamydia trachomatis inclusion fusion. J Bacteriol 2016; 198:1347–1355 [View Article]
    [Google Scholar]
  110. Ronzone E, Paumet F. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection. PLoS One 2013; 8:e69769 [View Article]
    [Google Scholar]
  111. Damiani MT, Gambarte Tudela J, Capmany A. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Cell Microbiol 2014; 16:1329–1338 [View Article]
    [Google Scholar]
  112. Burdette DL, Seemann J, Orth K. Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol 2009; 73:639–649 [View Article]
    [Google Scholar]
  113. Matsuda S, Okada N, Kodama T, Honda T, Iida T. A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H+-ATPase subunit c and ruptures host cell lysosomes. PLoS Pathog 2012; 8:e1002803 [View Article]
    [Google Scholar]
  114. Kim J, Thanabalasuriar A, Chaworth-Musters T, Fromme JC, Frey EA et al. The bacterial virulence factor NleA inhibits cellular protein secretion by disrupting mammalian COPII function. Cell Host Microbe 2007; 2:160–171 [View Article]
    [Google Scholar]
  115. Cloutier M, Gauthier C, Fortin J-S, Genève L, Kim K et al. ER egress of invariant chain isoform p35 requires direct binding to MHCII molecules and is inhibited by the NleA virulence factor of enterohaemorrhagic Escherichia coli. Hum Immunol 2015; 76:292–296 [View Article]
    [Google Scholar]
  116. Rzomp KA, Moorhead AR, Scidmore MA. The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect Immun 2006; 74:5362–5373 [View Article]
    [Google Scholar]
  117. Cortes C, Rzomp KA, Tvinnereim A, Scidmore MA, Wizel B. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect Immun 2007; 75:5586–5596 [View Article]
    [Google Scholar]
  118. Paul B, Kim HS, Kerr MC, Huston WM, Teasdale RD et al. Structural basis for the hijacking of endosomal sorting nexin proteins by Chlamydia trachomatis. Elife 2017; 6:1–23 [View Article] [PubMed]
    [Google Scholar]
  119. Mirrashidi KM, Elwell CA, Verschueren E, Johnson JR, Frando A et al. Global mapping of the inc-human interactome reveals that retromer restricts Chlamydia infection. Cell Host Microbe 2015; 18:109–121 [View Article]
    [Google Scholar]
  120. Berger CN, Crepin VF, Baruch K, Mousnier A, Rosenshine I et al. EspZ of enteropathogenic and enterohemorrhagic Escherichia coli regulates type III secretion system protein translocation. mBio 2012; 3:1–12 [View Article] [PubMed]
    [Google Scholar]
  121. Kanack KJ, Crawford JA, Tatsuno I, Karmali MA, Kaper JB. SepZ/EspZ is secreted and translocated into HeLa cells by the enteropathogenic Escherichia coli type III secretion system. Infect Immun 2005; 73:4327–4337 [View Article]
    [Google Scholar]
  122. Shames SR, Croxen MA, Deng W, Finlay BB. The type III system-secreted effector EspZ localizes to host mitochondria and interacts with the translocase of inner mitochondrial membrane 17b. Infect Immun 2011; 79:4784–4790 [View Article]
    [Google Scholar]
  123. Shames SR, Deng W, Guttman JA, de Hoog CL, Li Y et al. The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling. Cell Microbiol 2010; 12:1322–1339 [View Article]
    [Google Scholar]
  124. Hartland EL, Batchelor M, Delahay RM, Hale C, Matthews S et al. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol Microbiol 1999; 32:151–158 [View Article]
    [Google Scholar]
  125. Kenny B. Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol 1999; 31:1229–1241 [View Article]
    [Google Scholar]
  126. Frankel G, Phillips AD. Attaching effacing Escherichia coli and paradigms of Tir-triggered actin polymerization: getting off the pedestal. Cell Microbiol 2008; 10:549–556 [View Article]
    [Google Scholar]
  127. von Heijne G. The membrane protein universe: what’s out there and why bother?. J Intern Med 2007; 261:543–557 [View Article]
    [Google Scholar]
  128. Galán JE. Common themes in the design and function of bacterial effectors. Cell Host Microbe 2009; 5:571–579 [View Article]
    [Google Scholar]
  129. Bergeron JRC, Marlovits TC. Cryo-EM of the injectisome and type III secretion systems. Curr Opin Struct Biol 2022; 75:102403 [View Article]
    [Google Scholar]
  130. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596:583–589 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001292
Loading
/content/journal/micro/10.1099/mic.0.001292
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error