1887

Abstract

The structural genes expressing type 1 fimbriae in alternate between expressed (phase ON) and non-expressed (phase OFF) states due to inversion of the 314 bp genetic switch. The FimB tyrosine integrase inverts by site-specific recombination, alternately connecting and disconnecting the operon encoding the fimbrial subunit protein and its associated secretion and adhesin factors, to and from its transcriptional promoter within . Site-specific recombination by the FimB recombinase becomes biased towards phase ON as DNA supercoiling is relaxed, a condition that occurs when bacteria approach the stationary phase of the growth cycle. This effect can be mimicked in exponential phase cultures by inhibiting the negative DNA supercoiling activity of DNA gyrase. We report that this bias towards phase ON depends on the presence of the Fis nucleoid-associated protein. We mapped the Fis binding to a site within the invertible switch by DNase I footprinting. Disruption of this binding site by base substitution mutagenesis abolishes both Fis binding and the ability of the mutated switch to sustain its phase ON bias when DNA is relaxed, even in bacteria that produce the Fis protein. In addition, the Fis binding site overlaps one of the sites used by the Lrp protein, a known directionality determinant of inversion that also contributes to phase ON bias. The Fis–Lrp relationship at is reminiscent of that between Fis and Xis when promoting DNA relaxation-dependent excision of bacteriophage λ from the chromosome. However, unlike the co-binding mechanism used by Fis and Xis at λ , the Fis–Lrp relationship at involves competitive binding. We discuss these findings in the context of the link between inversion biasing and the physiological state of the bacterium.

Funding
This study was supported by the:
  • Science Foundation Ireland (Award 13/IA/1875)
    • Principle Award Recipient: CharlesJ Dorman
  • Wellcome Trust (Award 061796)
    • Principle Award Recipient: CharlesJ Dorman
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001283
2023-01-12
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/1/mic001283.html?itemId=/content/journal/micro/10.1099/mic.0.001283&mimeType=html&fmt=ahah

References

  1. Spaulding CN, Schreiber HL, Zheng W, Dodson KW, Hazen JE et al. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. Elife 2018; 7:e31662 [View Article]
    [Google Scholar]
  2. Connell I, Agace W, Klemm P, Schembri M, Mărild S et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 1996; 93:9827–9832 [View Article] [PubMed]
    [Google Scholar]
  3. Flores-Mireles AL, Walker JN, Caparon MG, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13:269–284 [View Article] [PubMed]
    [Google Scholar]
  4. Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2002; 99:17020–17024 [View Article] [PubMed]
    [Google Scholar]
  5. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 2003; 301:105–107 [View Article] [PubMed]
    [Google Scholar]
  6. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 2004; 101:1333–1338 [View Article] [PubMed]
    [Google Scholar]
  7. Wright KJ, Seed PC, Hultgren SJ. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 2007; 9:2230–2241 [View Article] [PubMed]
    [Google Scholar]
  8. Jin X, Marshall JS. Mechanics of biofilms formed of bacteria with fimbriae appendages. PLoS One 2020; 15:e0243280 [View Article]
    [Google Scholar]
  9. Abraham JM, Freitag CS, Clements JR, Eisenstein BI. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci U S A 1985; 82:5724–5727 [View Article]
    [Google Scholar]
  10. McFarland KA, Dorman CJ. Autoregulated expression of the gene coding for the leucine-responsive protein, Lrp, a global regulator in Salmonella enterica serovar Typhimurium. Microbiology 2008; 154:2008–2016 [View Article]
    [Google Scholar]
  11. McFarland KA, Lucchini S, Hinton JCD, Dorman CJ. The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar typhimurium via the fimZ regulatory gene. J Bacteriol 2008; 190:602–612 [View Article] [PubMed]
    [Google Scholar]
  12. Eisenstein BI. Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science 1981; 214:337–339 [View Article] [PubMed]
    [Google Scholar]
  13. Dorman CJ. Mechanistic insights from molecular microbiology into the production of immunological and neuronal diversity. Mol Microbiol 2022; 55:26–33 [View Article]
    [Google Scholar]
  14. Jiang X, Hall AB, Arthur TD, Plichta DR, Covington CT et al. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut. Science 2019; 363:181–187 [View Article] [PubMed]
    [Google Scholar]
  15. Sánchez-Romero MA, Casadesús J. Waddington’s landscapes in the bacterial world. Front Microbiol 2021; 12:685080 [View Article] [PubMed]
    [Google Scholar]
  16. Zamora M, Ziegler CA, Freddolino PL, Wolfe AJ. A thermosensitive, phase-variable epigenetic switch: pap revisited. Microbiol Mol Biol Rev 2020; 84:e00030-17 [View Article]
    [Google Scholar]
  17. Hinde P, Deighan P, Dorman CJ. Characterization of the detachable Rho-dependent transcription terminator of the fimE gene in Escherichia coli K-12. J Bacteriol 2005; 187:8256–8266 [View Article] [PubMed]
    [Google Scholar]
  18. Joyce SA, Dorman CJ. A Rho-dependent phase-variable transcription terminator controls expression of the FimE recombinase in Escherichia coli. Mol Microbiol 2002; 45:1107–1117 [View Article] [PubMed]
    [Google Scholar]
  19. Gally DL, Leathart J, Blomfield IC. Interaction of FimB and FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol Microbiol 1996; 21:725–738 [View Article] [PubMed]
    [Google Scholar]
  20. McCusker MP, Turner EC, Dorman CJ. DNA sequence heterogeneity in site-specific recombinase binding sites determines the directionality of fim genetic switch DNA inversion in Escherichia coli K-12. Mol Microbiol 2008; 67:171–187 [View Article]
    [Google Scholar]
  21. Holden N, Blomfield IC, Uhlin B-E, Totsika M, Kulasekara DH et al. Comparative analysis of FimB and FimE recombinase activity. Microbiology 2007; 153:4138–4149 [View Article]
    [Google Scholar]
  22. Klemm P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 1986; 5:1389–1393 [View Article] [PubMed]
    [Google Scholar]
  23. Kulasekara HD, Blomfield IC. The molecular basis for the specificity of fimE in the phase variation of type 1 fimbriae of Escherichia coli K-12. Mol Microbiol 1999; 31:1171–1181 [View Article] [PubMed]
    [Google Scholar]
  24. Smith SGJ, Dorman CJ. Functional analysis of the FimE integrase of Escherichia coli K-12: isolation of mutant derivatives with altered DNA inversion preferences. Mol Microbiol 1999; 34:965–979 [View Article]
    [Google Scholar]
  25. McClain MS, Blomfield IC, Eisenstein BI. Roles of fimB and fimE in site-specific DNA inversion associated with phase variation of type 1 fimbriae in Escherichia coli. J Bacteriol 1991; 173:5308–5314 [View Article]
    [Google Scholar]
  26. Blomfield IC, McClain MS, Princ JA, Calie PJ, Eisenstein BI. Type 1 fimbriation and fimE mutants of Escherichia coli K-12. J Bacteriol 1991; 173:5298–5307 [View Article] [PubMed]
    [Google Scholar]
  27. Dove SL, Dorman CJ. The site-specific recombination system regulating expression of the type 1 fimbrial subunit gene of Escherichia coli is sensitive to changes in DNA supercoiling. Mol Microbiol 1994; 14:975–988 [View Article] [PubMed]
    [Google Scholar]
  28. Dove SL, Dorman CJ. Multicopy fimB gene expression in Escherichia coli: binding to inverted repeats in vivo, effect on fimA gene transcription and DNA inversion. Mol Microbiol 1996; 21:1161–1173 [View Article] [PubMed]
    [Google Scholar]
  29. Müller CM, Aberg A, Straseviçiene J, Emody L, Uhlin BE et al. Type 1 fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMP. PLoS Pathog 2009; 5:e1000303 [View Article]
    [Google Scholar]
  30. Crisona NJ, Weinberg RL, Peter BJ, Sumners DW, Cozzarelli NR. The topological mechanism of phage lambda integrase. J Mol Biol 1999; 289:747–775 [View Article] [PubMed]
    [Google Scholar]
  31. Landy A. The λ integrase site-specific recombination pathway. Microbiol Spectr 2015; 3:MDNA3–0051 [View Article]
    [Google Scholar]
  32. Blomfield IC, Kulasekara DH, Eisenstein BI. Integration host factor stimulates both FimB- and FimE-mediated site-specific DNA inversion that controls phase variation of type 1 fimbriae expression in Escherichia coli. . Mol Microbiol 1997; 23:705–717 [View Article] [PubMed]
    [Google Scholar]
  33. Dorman CJ, Higgins CF. Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases. J Bacteriol 1987; 169:3840–3843 [View Article] [PubMed]
    [Google Scholar]
  34. Eisenstein BI, Sweet DS, Vaughn V, Friedman DI. Integration host factor is required for the DNA inversion that controls phase variation in Escherichia coli. Proc Natl Acad Sci U S A 1987; 84:6506–6510 [View Article] [PubMed]
    [Google Scholar]
  35. Blomfield IC, Calie PJ, Eberhardt KJ, McClain MS, Eisenstein BI. Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12. J Bacteriol 1993; 175:27–36 [View Article] [PubMed]
    [Google Scholar]
  36. Corcoran CP, Dorman CJ. DNA relaxation-dependent phase biasing of the fim genetic switch in Escherichia coli depends on the interplay of H-NS, IHF and LRP. Mol Microbiol 2009; 74:1071–1082 [View Article] [PubMed]
    [Google Scholar]
  37. Gally DL, Rucker TJ, Blomfield IC. The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J Bacteriol 1994; 176:5665–5672 [View Article] [PubMed]
    [Google Scholar]
  38. Kelly A, Conway C, Ó Cróinín T, Smith SGJ, Dorman CJ. DNA Supercoiling and the Lrp Protein Determine the Directionality of fim Switch DNA Inversion in Escherichia coli K-12. J Bacteriol 2006; 188:5356–5363 [View Article] [PubMed]
    [Google Scholar]
  39. Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR et al. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 1988; 52:569–584 [View Article]
    [Google Scholar]
  40. O’Gara JP, Dorman CJ. Effects of local transcription and H-NS on inversion of the fim switch of Escherichia coli. Mol Microbiol 2000; 36:457–466 [View Article]
    [Google Scholar]
  41. Kawula TH, Orndorff PE. Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS. J Bacteriol 1991; 173:4116–4123 [View Article] [PubMed]
    [Google Scholar]
  42. Papagiannis CV, Sam MD, Abbani MA, Yoo D, Cascio D et al. Fis targets assembly of the Xis nucleoprotein filament to promote excisive recombination by phage lambda. J Mol Biol 2007; 367:328–343 [View Article] [PubMed]
    [Google Scholar]
  43. Chen S, Iannolo M, Calvo JM. Cooperative binding of the leucine-responsive regulatory protein (Lrp) to DNA. J Mol Biol 2005; 345:251–264 [View Article] [PubMed]
    [Google Scholar]
  44. Cui Y, Wang Q, Stormo GD, Calvo JM. A consensus sequence for binding of Lrp to DNA. J Bacteriol 1995; 177:4872–4880 [View Article]
    [Google Scholar]
  45. Chen S, Calvo JM. Leucine-induced dissociation of Escherichia coli Lrp hexadecamers to octamers. J Mol Biol 2002; 318:1031–1042 [View Article]
    [Google Scholar]
  46. Calvo JM, Matthews RG. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 1994; 58:466–490 [View Article]
    [Google Scholar]
  47. Ziegler CA, Freddolino PL. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea. Crit Rev Biochem Mol Biol 2021; 56:373–400 [View Article] [PubMed]
    [Google Scholar]
  48. Wang Q, Wu J, Friedberg D, Plakto J, Calvo JM. Regulation of the Escherichia coli lrp gene. J Bacteriol 1994; 176:1831–1839 [View Article] [PubMed]
    [Google Scholar]
  49. Cho B-K, Barrett CL, Knight EM, Park YS, Palsson . Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli. Proc Natl Acad Sci U S A 2008; 105:19462–19467 [View Article] [PubMed]
    [Google Scholar]
  50. Kroner GM, Wolfe MB, Freddolino PL. Escherichia coli Lrp regulates one-third of the genome via direct, cooperative, and indirect routes. J Bacteriol 2019; 201:e00411-18 [View Article]
    [Google Scholar]
  51. Tani TH, Khodursky A, Blumenthal RM, Brown PO, Matthews RG. Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci U S A 2002; 99:13471–13476 [View Article] [PubMed]
    [Google Scholar]
  52. Zinser ER, Kolter R. Prolonged stationary-phase incubation selects for lrp mutations in Escherichia coli K-12. J Bacteriol 2000; 182:4361–4365 [View Article]
    [Google Scholar]
  53. Ball CA, Osuna R, Ferguson KC, Johnson RC. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 1992; 174:8043–8056 [View Article] [PubMed]
    [Google Scholar]
  54. Bogue MM, Mogre A, Beckett MC, Thomson NR, Dorman CJ. Network rewiring: physiological consequences of reciprocally exchanging the physical locations and growth-phase-dependent expression patterns of the Salmonella fis and dps Genes. mBio 2020; 11:e0218–20 [View Article]
    [Google Scholar]
  55. O Cróinín T, Dorman CJ. Expression of the Fis protein is sustained in late-exponential- and stationary-phase cultures of Salmonella enterica serovar Typhimurium grown in the absence of aeration. Mol Microbiol 2007; 66:237–251 [View Article]
    [Google Scholar]
  56. Osuna R, Lienau D, Hughes KT, Johnson RC. Sequence, regulation, and functions of fis in Salmonella typhimurium. J Bacteriol 1995; 177:2021–2032 [View Article]
    [Google Scholar]
  57. Esposito D, Gerard GF. The Escherichia coli Fis protein stimulates bacteriophage lambda integrative recombination in vitro. J Bacteriol 2003; 185:3076–3080 [View Article] [PubMed]
    [Google Scholar]
  58. Gille H, Egan JB, Roth A, Messer W. The FIS protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli. Nucleic Acids Res 1991; 19:4167–4172 [View Article] [PubMed]
    [Google Scholar]
  59. Grimwade JE, Leonard AC. Blocking, bending, and binding: regulation of initiation of chromosome replication during the Escherichia coli cell cycle by transcriptional modulators that interact with origin DNA. Front Microbiol 2021; 12:732270 [View Article] [PubMed]
    [Google Scholar]
  60. Inoue Y, Tanaka H, Kasho K, Fujimitsu K, Oshima T et al. Chromosomal location of the DnaA-reactivating sequence DARS2 is important to regulate timely initiation of DNA replication in Escherichia coli. Genes Cells 2016; 21:1015–1023 [View Article] [PubMed]
    [Google Scholar]
  61. Ryan VT, Grimwade JE, Camara JE, Crooke E, Leonard AC. Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA. Mol Microbiol 2004; 51:1347–1359 [View Article]
    [Google Scholar]
  62. Karambelkar S, Swapna G, Nagaraja V. Silencing of toxic gene expression by Fis. Nucleic Acids Res 2012; 40:4358–4367 [View Article]
    [Google Scholar]
  63. Kelly A, Goldberg MD, Carroll RK, Danino V, Hinton JCD et al. A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology 2004; 150:2037–2053 [View Article] [PubMed]
    [Google Scholar]
  64. O Cróinín T, Carroll RK, Kelly A, Dorman CJ. Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 62:869–882 [View Article]
    [Google Scholar]
  65. Bétermier M, Lefrère V, Koch C, Alazard R, Chandler M. The Escherichia coli protein, Fis: specific binding to the ends of phage Mu DNA and modulation of phage growth. Mol Microbiol 1989; 3:459–468 [View Article] [PubMed]
    [Google Scholar]
  66. Weinreich MD, Reznikoff WS. Fis plays a role in Tn5 and IS50 transposition. J Bacteriol 1992; 174:4530–4537 [View Article] [PubMed]
    [Google Scholar]
  67. Cameron ADS, Stoebel DM, Dorman CJ. DNA supercoiling is differentially regulated by environmental factors and FIS in Escherichia coli and Salmonella enterica. Mol Microbiol 2011; 80:85–101 [View Article]
    [Google Scholar]
  68. Weinstein-Fischer D, Altuvia S. Differential regulation of Escherichia coli topoisomerase I by Fis. Mol Microbiol 2007; 63:1131–1144 [View Article] [PubMed]
    [Google Scholar]
  69. Keane OM, Dorman CJ. The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis. Mol Gen Genomics 2003; 270:56–65 [View Article] [PubMed]
    [Google Scholar]
  70. Schneider R, Travers A, Kutateladze T, Muskhelishvili G. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol Microbiol 1999; 34:953–964 [View Article] [PubMed]
    [Google Scholar]
  71. Muskhelishvili G, Travers A. Transcription factor as a topological homeostat. Front Biosci 2003; 8:d279–85 [View Article]
    [Google Scholar]
  72. Rochman M, Aviv M, Glaser G, Muskhelishvili G. Promoter protection by a transcription factor acting as a local topological homeostat. EMBO Rep 2002; 3:355–360 [View Article] [PubMed]
    [Google Scholar]
  73. Schneider R, Travers A, Muskhelishvili G. The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA. Mol Microbiol 2000; 38:167–175 [View Article]
    [Google Scholar]
  74. Saldaña-Ahuactzi Z, Soria-Bustos J, Martínez-Santos VI, Yañez-Santos JA, Martínez-Laguna Y et al. The Fis nucleoid protein negatively regulates the phase variation fimS switch of the type 1 pilus operon in enteropathogenic Escherichia coli. Front Microbiol 2022; 13:882563 [View Article]
    [Google Scholar]
  75. Miller JH. Short Course in Bacterial Genetics New York: Cold Spring Harbor; 1992
    [Google Scholar]
  76. Sternberg NL, Maurer R. Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. Methods Enzymol 1991; 204:18–43 [View Article]
    [Google Scholar]
  77. Wilson RL, Libby SJ, Freet AM, Boddicker JD, Fahlen TF et al. Fis, a DNA nucleoid-associated protein, is involved in Salmonella typhimurium SPI-1 invasion gene expression. Mol Microbiol 2001; 39:79–88 [View Article] [PubMed]
    [Google Scholar]
  78. Sambrook J, Russell D. Molecular Cloning: A Laboratory Guide Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  79. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580 [View Article] [PubMed]
    [Google Scholar]
  80. Marshall DG, Sheehan BJ, Dorman CJ. A role for the leucine-responsive regulatory protein and integration host factor in the regulation of the Salmonella plasmid virulence (spv) locus in Salmonella typhimurium. Mol Microbiol 1999; 34:134–145 [View Article]
    [Google Scholar]
  81. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977; 74:5463–5467 [View Article] [PubMed]
    [Google Scholar]
  82. Hancock SP, Stella S, Cascio D, Johnson RC. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis. PLoS One 2016; 11:e0150189 [View Article]
    [Google Scholar]
  83. Stella S, Cascio D, Johnson RC. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev 2010; 24:814–826 [View Article]
    [Google Scholar]
  84. Gosink KK, Ross W, Leirmo S, Osuna R, Finkel SE et al. DNA binding and bending are necessary but not sufficient for Fis-dependent activation of rrnB P1. J Bacteriol 1993; 175:1580–1589 [View Article] [PubMed]
    [Google Scholar]
  85. Seah NE, Warren D, Tong W, Laxmikanthan G, Van Duyne GD et al. Nucleoprotein architectures regulating the directionality of viral integration and excision. Proc Natl Acad Sci U S A 2014; 111:12372–12377 [View Article] [PubMed]
    [Google Scholar]
  86. Abremski K, Gottesman S. Purification of the bacteriophage lambda xis gene product required for lambda excisive recombination. J Biol Chem 1982; 257:9658–9662 [PubMed]
    [Google Scholar]
  87. Nash HA. Integrative recombination of bacteriophage lambda DNA in vitro. Proc Natl Acad Sci U S A 1975; 72:1072–1076 [View Article] [PubMed]
    [Google Scholar]
  88. Abbani MA, Papagiannis CV, Sam MD, Cascio D, Johnson RC et al. Structure of the cooperative Xis-DNA complex reveals a micronucleoprotein filament that regulates phage lambda intasome assembly. Proc Natl Acad Sci U S A 2007; 104:2109–2114 [View Article] [PubMed]
    [Google Scholar]
  89. Thompson JF, Moitoso de Vargas L, Koch C, Kahmann R, Landy A. Cellular factors couple recombination with growth phase: characterization of a new component in the lambda site-specific recombination pathway. Cell 1987; 50:901–908 [View Article] [PubMed]
    [Google Scholar]
  90. Dorman CJ, Schumacher MA, Bush MJ, Brennan RG, Buttner MJ. When is a transcription factor a NAP?. Curr Opin Microbiol 2020; 55:26–33 [View Article] [PubMed]
    [Google Scholar]
  91. Hancock SP, Cascio D, Johnson RC. Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Res 2019; 47:8874–8887 [View Article] [PubMed]
    [Google Scholar]
  92. Ball CA, Johnson RC. Multiple effects of Fis on integration and the control of lysogeny in phage lambda. J Bacteriol 1991; 173:4032–4038 [View Article] [PubMed]
    [Google Scholar]
  93. Bordes P, Conter A, Morales V, Bouvier J, Kolb A et al. DNA supercoiling contributes to disconnect sigmaS accumulation from sigmaS-dependent transcription in Escherichia coli. Mol Microbiol 2003; 48:561–571 [View Article]
    [Google Scholar]
  94. Conter A, Menchon C, Gutierrez C. Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J Mol Biol 1997; 273:75–83 [View Article] [PubMed]
    [Google Scholar]
  95. Hernday AD, Braaten BA, Low DA. The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol Cell 2003; 12:947–957 [View Article] [PubMed]
    [Google Scholar]
  96. Peterson SN, Reich NO. Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J Mol Biol 2008; 383:92–105 [View Article] [PubMed]
    [Google Scholar]
  97. Holden NJ, Uhlin BE, Gally DL. PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol Microbiol 2001; 42:319–330 [View Article] [PubMed]
    [Google Scholar]
  98. Lindberg S, Xia Y, Sondén B, Göransson M, Hacker J et al. Regulatory Interactions among adhesin gene systems of uropathogenic Escherichia coli. Infect Immun 2008; 76:771–780 [View Article] [PubMed]
    [Google Scholar]
  99. Xia Y, Gally D, Forsman-Semb K, Uhlin BE. Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. EMBO J 2000; 19:1450–1457 [View Article] [PubMed]
    [Google Scholar]
  100. Landgraf JR, Wu J, Calvo JM. Effects of nutrition and growth rate on Lrp levels in Escherichia coli. J Bacteriol 1996; 178:6930–6936 [View Article] [PubMed]
    [Google Scholar]
  101. Rasmussen LJ, Marinus MG, Løbner-Olesen A. Novel growth rate control of dam gene expression in Escherichia coli. Mol Microbiol 1994; 12:631–638 [View Article] [PubMed]
    [Google Scholar]
  102. Hsieh LS, Burger RM, Drlica K. Bacterial DNA supercoiling and [ATP]/[ADP]. Changes associated with a transition to anaerobic growth. J Mol Biol 1991; 219:443–450 [View Article]
    [Google Scholar]
  103. Hsieh LS, Rouviere-Yaniv J, Drlica K. Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock. J Bacteriol 1991; 173:3914–3917 [View Article]
    [Google Scholar]
  104. van Workum M, van Dooren SJ, Oldenburg N, Molenaar D, Jensen PR et al. DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol 1996; 20:351–360 [View Article] [PubMed]
    [Google Scholar]
  105. Westerhoff HV, van Workum M. Control of DNA structure and gene expression. Biomed Biochim Acta 1990; 49:839–853 [PubMed]
    [Google Scholar]
  106. Kusano S, Ding Q, Fujita N, Ishihama A. Promoter selectivity of Escherichia coli RNA polymerase Eσ70 and Eσ38 holoenzymes. Journal of Biological Chemistry 1996; 271:1998–2004 [View Article]
    [Google Scholar]
  107. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998; 30:285–293 [View Article] [PubMed]
    [Google Scholar]
  108. Schembri MA, Hjerrild L, Gjermansen M, Klemm P. Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 2003; 185:2236–2242 [View Article] [PubMed]
    [Google Scholar]
  109. Blomfield IC, Vaughn V, Rest RF, Eisenstein BI. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 1991; 5:1447–1457 [View Article]
    [Google Scholar]
  110. Nakano Y, Yoshida Y, Yamashita Y, Koga T. Construction of a series of pACYC-derived plasmid vectors. Gene 1995; 162:157–158 [View Article] [PubMed]
    [Google Scholar]
  111. Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985; 33:103–119 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001283
Loading
/content/journal/micro/10.1099/mic.0.001283
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error