1887

Abstract

is a Gram-negative opportunistic pathogen frequently isolated from chronic infections of the cystic fibrosis lung and burn wounds, and is a major cause of antimicrobial-resistant nosocomial infections. is frequently co-isolated with the opportunistic fungal pathogen with the presence of in dual-species biofilms promoting tolerance to meropenem. Here, transcription profiling of mature single- or dual-species biofilms was carried out to understand the molecular mechanism(s) by which enhances meropenem tolerance. appeared to have a mild impact on the transcriptome of mature biofilms, with most differentially regulated genes being involved in interkingdom interactions (i.e. quorum sensing and phenazine biosynthesis). The addition of meropenem to mature single- or dual-species biofilms resulted in a significant bacterial transcriptional response, including the induction of the beta-lactamase, , genes involved in biofilm formation. elicited a similar transcriptional response to meropenem in the presence of , but promoted the expression of additional efflux pumps, which could play roles in increasing the tolerance of to meropenem.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/M02623X/1)
    • Principle Award Recipient: JessicaM. A Blair
  • Biotechnology and Biological Sciences Research Council (Award BB/R00966X/1 and BB/R00966X/2)
    • Principle Award Recipient: RebeccaA Hall
  • Medical Research Council (Award MR/L00903X/1)
    • Principle Award Recipient: RebeccaA Hall
  • Wellcome Trust (Award 108876/Z/15/Z)
    • Principle Award Recipient: FarhanaAlam
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001271
2023-01-23
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/1/mic001271.html?itemId=/content/journal/micro/10.1099/mic.0.001271&mimeType=html&fmt=ahah

References

  1. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002; 15:194–222 [View Article] [PubMed]
    [Google Scholar]
  2. Ramakrishnan M, Putli Bai S, Babu M. Study on biofilm formation in burn wound infection in a pediatric hospital in Chennai, India. Ann Burns Fire Disasters 2016; 29:276–280 [PubMed]
    [Google Scholar]
  3. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C et al. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 2016; 306:48–58 [View Article] [PubMed]
    [Google Scholar]
  4. Bjarnsholt T, Jensen , Fiandaca MJ, Pedersen J, Hansen CR et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 2009; 44:547–558 [View Article] [PubMed]
    [Google Scholar]
  5. Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen B, Andersen AS et al. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 2009; 47:4084–4089 [View Article] [PubMed]
    [Google Scholar]
  6. Alhede M, Bjarnsholt T, Jensen , Phipps RK, Moser C et al. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 2009; 155:3500–3508 [View Article]
    [Google Scholar]
  7. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9:34–39 [View Article] [PubMed]
    [Google Scholar]
  8. Guilhen C, Charbonnel N, Parisot N, Gueguen N, Iltis A et al. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells. BMC Genomics 2016; 17:237 [View Article] [PubMed]
    [Google Scholar]
  9. Doern GV, Brogden-Torres B. Optimum use of selective plated media in primary processing of respiratory tract specimens from patients with cystic fibrosis. J Clin Microbiol 1992; 30:2740–2742 [View Article] [PubMed]
    [Google Scholar]
  10. Fourie R, Pohl CH. Beyond antagonism: the interaction between Candida species and Pseudomonas aeruginosa. JoF 2019; 5:34 [View Article]
    [Google Scholar]
  11. Brand A, Barnes JD, Mackenzie KS, Odds FC, Gow NAR. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa. FEMS Microbiol Lett 2008; 287:48–55 [View Article] [PubMed]
    [Google Scholar]
  12. Hogan DA, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 2002; 296:2229–2232 [View Article] [PubMed]
    [Google Scholar]
  13. Alam F, Catlow D, Di Maio A, Blair JMA, Hall RA. Candida albicans enhances meropenem tolerance of Pseudomonas aeruginosa in a dual-species biofilm. J Antimicrob Chemother 2020; 75:925–935 [View Article] [PubMed]
    [Google Scholar]
  14. Harriott MM, Noverr MC. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 2009; 53:3914–3922 [View Article] [PubMed]
    [Google Scholar]
  15. Kong EF, Tsui C, Kucharíková S, Andes D, Van Dijck P et al. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. mBio 2016; 7:e01365-16 [View Article] [PubMed]
    [Google Scholar]
  16. De Brucker K, Tan Y, Vints K, De Cremer K, Braem A et al. Fungal β-1,3-glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm. Antimicrob Agents Chemother 2015; 59:3052–3058 [View Article]
    [Google Scholar]
  17. Mitchell KF, Zarnowski R, Sanchez H, Edward JA, Reinicke EL et al. Community participation in biofilm matrix assembly and function. Proc Natl Acad Sci U S A 2015; 112:4092–4097 [View Article] [PubMed]
    [Google Scholar]
  18. Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 2007; 51:510–520 [View Article] [PubMed]
    [Google Scholar]
  19. Xie C, Mao X, Huang J, Ding Y, Wu J et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011; 39:W316–22 [View Article] [PubMed]
    [Google Scholar]
  20. Choi D-S, Kim D-K, Choi SJ, Lee J, Choi J-P et al. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics 2011; 11:3424–3429 [View Article]
    [Google Scholar]
  21. Khaledi A, Schniederjans M, Pohl S, Rainer R, Bodenhofer U et al. Transcriptome profiling of antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:4722–4733 [View Article] [PubMed]
    [Google Scholar]
  22. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 2004; 48:1175–1187 [View Article] [PubMed]
    [Google Scholar]
  23. Billings N, Millan M, Caldara M, Rusconi R, Tarasova Y et al. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 2013; 9:e1003526 [View Article] [PubMed]
    [Google Scholar]
  24. Chen L, Zou Y, Kronfl AA, Wu Y. Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation. MicrobiologyOpen 2020; 9:e991 [View Article] [PubMed]
    [Google Scholar]
  25. Chen L, Zou Y, She P, Wu Y. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res 2015; 172:19–25 [View Article] [PubMed]
    [Google Scholar]
  26. Liu L, Ye M, Li X, Li J, Deng Z et al. Identification and characterization of an antibacterial type VI secretion system in the carbapenem-resistant strain Klebsiella pneumoniae HS11286. Front Cell Infect Microbiol 2017; 7:442 [View Article] [PubMed]
    [Google Scholar]
  27. Wang J, Zhou Z, He F, Ruan Z, Jiang Y et al. The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606. PLoS One 2018; 13:e0192288 [View Article]
    [Google Scholar]
  28. LeRoux M, Kirkpatrick RL, Montauti EI, Tran BQ, Peterson SB et al. Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa. Elife 2015; 4: [View Article] [PubMed]
    [Google Scholar]
  29. Higgins S, Heeb S, Rampioni G, Fletcher MP, Williams P et al. Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Front Cell Infect Microbiol 2018; 8:252 [View Article] [PubMed]
    [Google Scholar]
  30. Cugini C, Calfee MW, Farrow JM 3rd, Morales DK, Pesci EC et al. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 2007; 65:896–906 [View Article] [PubMed]
    [Google Scholar]
  31. Cugini C, Morales DK, Hogan DA. Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. Microbiology 2010; 156:3096–3107 [View Article]
    [Google Scholar]
  32. Oglesby AG, Farrow JM 3rd, Lee J-H, Tomaras AP, Greenberg EP et al. The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 2008; 283:15558–15567 [View Article] [PubMed]
    [Google Scholar]
  33. Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun 2019; 10:762 [View Article]
    [Google Scholar]
  34. Saunders SH, Tse ECM, Yates MD, Otero FJ, Trammell SA et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell 2020; 182:919–932 [View Article] [PubMed]
    [Google Scholar]
  35. Hulen C, Racine P-J, Chevalier S, Feuilloley M, Lomri N-E. Identification of the PA1113 gene product as an ABC transporter involved in the uptake of Carbenicillin in Pseudomonas aeruginosa PAO1. Antibiotics 2020; 9:596 [View Article]
    [Google Scholar]
  36. Scoffone VC, Trespidi G, Barbieri G, Irudal S, Perrin E et al. Role of RND efflux pumps in drug resistance of cystic fibrosis pathogens. Antibiotics 2021; 10:863 [View Article]
    [Google Scholar]
  37. Fusté E, López-Jiménez L, Segura C, Gainza E, Vinuesa T et al. Carbapenem-resistance mechanisms of multidrug-resistant Pseudomonas aeruginosa. J Med Microbiol 2013; 62:1317–1325 [View Article] [PubMed]
    [Google Scholar]
  38. Hassuna NA, Darwish MK, Sayed M, Ibrahem RA. Molecular epidemiology and mechanisms of high-level resistance to meropenem and imipenem in Pseudomonas aeruginosa. Infect Drug Resist 2020; 13:285–293 [View Article]
    [Google Scholar]
  39. Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 2006; 61:1308–1321 [View Article] [PubMed]
    [Google Scholar]
  40. Sakhtah H, Koyama L, Zhang Y, Morales DK, Fields BL et al. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci U S A 2016; 113:E3538–47 [View Article] [PubMed]
    [Google Scholar]
  41. Zhao X, Jin Y, Bai F, Cheng Z, Wu W et al. Mutation of PA4292 in Pseudomonas aeruginosa increases β-lactam resistance through upregulating pyocyanin production. Antimicrob Agents Chemother 2022; 66:e00421–00422 [View Article]
    [Google Scholar]
  42. Deretic V, Dikshit R, Konyecsni WM, Chakrabarty AM, Misra TK. The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 1989; 171:1278–1283 [View Article] [PubMed]
    [Google Scholar]
  43. Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O’Toole GA et al. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 2009; 5:e1000382 [View Article]
    [Google Scholar]
  44. Florez C, Raab JE, Cooke AC, Schertzer JW. Membrane distribution of the Pseudomonas quinolone signal modulates outer membrane vesicle production in Pseudomonas aeruginosa. mBio 2017; 8:e01034–01017 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001271
Loading
/content/journal/micro/10.1099/mic.0.001271
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error