1887

Abstract

Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In the operon belongs to the prophage element , and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress WT and mutant derivatives, we studied in the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of carrying DnaA_LOI mutations abolished the deleterious effects of WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001268
2022-11-29
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/11/mic001268.html?itemId=/content/journal/micro/10.1099/mic.0.001268&mimeType=html&fmt=ahah

References

  1. Albuquerque JP, Tobias-Santos V, Rodrigues AC, Mury FB, da Fonseca RN. small ORFs: a new class of essential genes for development. Genet Mol Biol 2015; 38:278–283 [View Article] [PubMed]
    [Google Scholar]
  2. Couso J-P, Patraquim P. Classification and function of small open reading frames. Nat Rev Mol Cell Biol 2017; 18:575–589 [View Article] [PubMed]
    [Google Scholar]
  3. Hellens RP, Brown CM, Chisnall MAW, Waterhouse PM, Macknight RC. The emerging world of small ORFs. Trends Plant Sci 2016; 21:317–328 [View Article] [PubMed]
    [Google Scholar]
  4. Samayoa J, Yildiz FH, Karplus K. Identification of prokaryotic small proteins using a comparative genomic approach. Bioinformatics 2011; 27:1765–1771 [View Article] [PubMed]
    [Google Scholar]
  5. Storz G, Wolf YI, Ramamurthi KS. Small proteins can no longer be ignored. Annu Rev Biochem 2014; 83:753–777 [View Article] [PubMed]
    [Google Scholar]
  6. Chu Q, Ma J, Saghatelian A. Identification and characterization of sORF-encoded polypeptides. Crit Rev Biochem Mol Biol 2015; 50:134–141 [View Article] [PubMed]
    [Google Scholar]
  7. He C, Jia C, Zhang Y, Xu P. Enrichment-based proteogenomics identifies microproteins, missing proteins, and novel smORFs in Saccharomyces cerevisiae. J Proteome Res 2018; 17:2335–2344 [View Article] [PubMed]
    [Google Scholar]
  8. Makarewich CA, Olson EN. Mining for Micropeptides. Trends Cell Biol 2017; 27:685–696 [View Article] [PubMed]
    [Google Scholar]
  9. Straub D, Wenkel S. Cross-species genome-wide identification of evolutionary conserved microproteins. Genome Biol Evol 2017; 9:777–789 [View Article] [PubMed]
    [Google Scholar]
  10. VanOrsdel CE, Kelly JP, Burke BN, Lein CD, Oufiero CE et al. Identifying new small proteins in Escherichia coli. Proteomics 2018; 18:e1700064 [View Article]
    [Google Scholar]
  11. Saghatelian A, Couso JP. Discovery and characterization of smORF-encoded bioactive polypeptides. Nat Chem Biol 2015; 11:909–916 [View Article] [PubMed]
    [Google Scholar]
  12. Staudt A-C, Wenkel S. Regulation of protein function by “microProteins.”. EMBO Rep 2011; 12:35–42 [View Article] [PubMed]
    [Google Scholar]
  13. Dolde U, Rodrigues V, Straub D, Bhati KK, Choi S et al. Synthetic microproteins: versatile tools for posttranslational regulation of target proteins. Plant Physiol 2018; 176:3136–3145 [View Article] [PubMed]
    [Google Scholar]
  14. Graeff M, Wenkel S. Regulation of protein function by interfering protein species. Biomol Concepts 2012; 3:71–78 [View Article] [PubMed]
    [Google Scholar]
  15. Zanet J, Benrabah E, Li T, Pélissier-Monier A, Chanut-Delalande H et al. Pri sORF peptides induce selective proteasome-mediated protein processing. Science 2015; 349:1356–1358 [View Article] [PubMed]
    [Google Scholar]
  16. Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol 2013; 9:59–64 [View Article] [PubMed]
    [Google Scholar]
  17. Slavoff SA, Heo J, Budnik BA, Hanakahi LA, Saghatelian A. A human short open reading frame (sORF)-encoded polypeptide that stimulates DNA end joining. J Biol Chem 2014; 289:10950–10957 [View Article]
    [Google Scholar]
  18. Erpf PE, Fraser JA. The long history of the diverse roles of short ORFs: sPEPs in fungi. Proteomics 2018; 18:e1700219 [View Article] [PubMed]
    [Google Scholar]
  19. An X, Zhang C, Sclafani RA, Seligman P, Huang M. The late-annotated small ORF LSO1 is a target gene of the iron regulon of Saccharomyces cerevisiae. Microbiologyopen 2015; 4:941–951 [View Article] [PubMed]
    [Google Scholar]
  20. Chabes A, Domkin V, Thelander L. Yeast Sml1, a protein inhibitor of ribonucleotide reductase. J Biol Chem 1999; 274:36679–36683 [View Article] [PubMed]
    [Google Scholar]
  21. Lee YD, Wang J, Stubbe J, Elledge SJ. Dif1 is a DNA-damage-regulated facilitator of nuclear import for ribonucleotide reductase. Mol Cell 2008; 32:70–80 [View Article] [PubMed]
    [Google Scholar]
  22. Kastenmayer JP, Ni L, Chu A, Kitchen LE, Au W-C et al. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res 2006; 16:365–373 [View Article] [PubMed]
    [Google Scholar]
  23. Friedman RC, Kalkhof S, Doppelt-Azeroual O, Mueller SA, Chovancová M et al. Common and phylogenetically widespread coding for peptides by bacterial small RNAs. BMC Genomics 2017; 18:553 [View Article]
    [Google Scholar]
  24. Miravet-Verde S, Ferrar T, Espadas-García G, Mazzolini R, Gharrab A et al. Unraveling the hidden universe of small proteins in bacterial genomes. Mol Syst Biol 2019; 15:e8290 [View Article] [PubMed]
    [Google Scholar]
  25. Yang X, Jensen SI, Wulff T, Harrison SJ, Long KS. Identification and validation of novel small proteins in Pseudomonas putida. Environ Microbiol Rep 2016; 8:966–974 [View Article]
    [Google Scholar]
  26. Zuber P. A peptide profile of the Bacillus subtilis genome. Peptides 2001; 22:1555–1577 [View Article] [PubMed]
    [Google Scholar]
  27. Ha U-H, Kim J, Badrane H, Jia J, Baker HV et al. An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol 2004; 54:307–320 [View Article]
    [Google Scholar]
  28. Wu W, Jin S. PtrB of Pseudomonas aeruginosa suppresses the type III secretion system under the stress of DNA damage. J Bacteriol 2005; 187:6058–6068 [View Article]
    [Google Scholar]
  29. Lloyd CR, Park S, Fei J, Vanderpool CK. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 2017; 199:e00869-16 [View Article]
    [Google Scholar]
  30. Ebmeier SE, Tan IS, Clapham KR, Ramamurthi KS. Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis. Mol Microbiol 2012; 84:682–696 [View Article] [PubMed]
    [Google Scholar]
  31. Handler AA, Lim JE, Losick R. Peptide inhibitor of cytokinesis during sporulation in Bacillus subtilis. Mol Microbiol 2008; 68:588–599 [View Article] [PubMed]
    [Google Scholar]
  32. Schmalisch M, Maiques E, Nikolov L, Camp AH, Chevreux B et al. Small genes under sporulation control in the Bacillus subtilis genome. J Bacteriol 2010; 192:5402–5412 [View Article] [PubMed]
    [Google Scholar]
  33. Araújo-Bazán L, Huecas S, Valle J, Andreu D, Andreu JM. Synthetic developmental regulator MciZ targets FtsZ across Bacillus species and inhibits bacterial division. Mol Microbiol 2019; 111:965–980 [View Article] [PubMed]
    [Google Scholar]
  34. Bisson-Filho AW, Discola KF, Castellen P, Blasios V, Martins A et al. FtsZ filament capping by MciZ, a developmental regulator of bacterial division. Proc Natl Acad Sci U S A 2015; 112:E2130–8 [View Article] [PubMed]
    [Google Scholar]
  35. Moeller R, Setlow P, Horneck G, Berger T, Reitz G et al. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J Bacteriol 2008; 190:1134–1140 [View Article] [PubMed]
    [Google Scholar]
  36. Setlow P. I will survive: DNA protection in bacterial spores. Trends Microbiol 2007; 15:172–180 [View Article]
    [Google Scholar]
  37. Burkholder WF, Kurtser I, Grossman AD. Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 2001; 104:269–279 [View Article] [PubMed]
    [Google Scholar]
  38. Cunningham KA, Burkholder WF. The histidine kinase inhibitor Sda binds near the site of autophosphorylation and may sterically hinder autophosphorylation and phosphotransfer to Spo0F. Mol Microbiol 2009; 71:659–677 [View Article] [PubMed]
    [Google Scholar]
  39. Rowland SL, Burkholder WF, Cunningham KA, Maciejewski MW, Grossman AD et al. Structure and mechanism of action of Sda, an inhibitor of the Histidine Kinases that regulate initiation of sporulation in Bacillus subtilis. Molecular Cell 2004; 13:689–701 [View Article] [PubMed]
    [Google Scholar]
  40. Veening J-W, Murray H, Errington J. A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis. Genes Dev 2009; 23:1959–1970 [View Article]
    [Google Scholar]
  41. Duval M, Cossart P. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr Opin Microbiol 2017; 39:81–88 [View Article] [PubMed]
    [Google Scholar]
  42. Liu B, Shadrin A, Sheppard C, Mekler V, Xu Y et al. A bacteriophage transcription regulator inhibits bacterial transcription initiation by σ-factor displacement. Nucleic Acids Res 2014a; 42:4294–4305 [View Article]
    [Google Scholar]
  43. Liu B, Shadrin A, Sheppard C, Mekler V, Xu Y et al. The sabotage of the bacterial transcription machinery by a small bacteriophage protein. Bacteriophage 2014b; 4:e28520 [View Article]
    [Google Scholar]
  44. Nechaev S, Imburgio D, Severinov K. Purification and characterization of bacteriophage-encoded inhibitors of host RNA polymerase: T-odd phage gp2-like proteins. Methods Enzymol 2003; 370:212–225 [View Article] [PubMed]
    [Google Scholar]
  45. Savalia D, Robins W, Nechaev S, Molineux I, Severinov K. The role of the T7 Gp2 inhibitor of host RNA polymerase in phage development. J Mol Biol 2010; 402:118–126 [View Article] [PubMed]
    [Google Scholar]
  46. Hood IV, Berger JM. Viral hijacking of a replicative helicase loader and its implications for helicase loading control and phage replication. Elife 2016; 5:e14158 [View Article] [PubMed]
    [Google Scholar]
  47. Liu J, Dehbi M, Moeck G, Arhin F, Bauda P et al. Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 2004; 22:185–191 [View Article] [PubMed]
    [Google Scholar]
  48. Hwang DS, Kornberg A. Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. J Biol Chem 1992; 267:23083–23086 [PubMed]
    [Google Scholar]
  49. Leonard AC, Grimwade JE. Regulation of DnaA assembly and activity: taking directions from the genome. Annu Rev Microbiol 2011; 65:19–35 [View Article] [PubMed]
    [Google Scholar]
  50. Mott ML, Berger JM. DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 2007; 5:343–354 [View Article] [PubMed]
    [Google Scholar]
  51. Ozaki S, Katayama T. DnaA structure, function, and dynamics in the initiation at the chromosomal origin. Plasmid 2009; 62:71–82 [View Article] [PubMed]
    [Google Scholar]
  52. Messer W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 2002; 26:355–374 [View Article] [PubMed]
    [Google Scholar]
  53. Goranov AI, Katz L, Breier AM, Burge CB, Grossman AD. A transcriptional response to replication status mediated by the conserved bacterial replication protein DnaA. Proc Natl Acad Sci USA 2005; 102:12932–12937 [View Article] [PubMed]
    [Google Scholar]
  54. Messer W, Weigel C. DnaA as a transcription regulator. Meth Enzymol 2003; 370:338–349
    [Google Scholar]
  55. Washington TA, Smith JL, Grossman AD. Genetic networks controlled by the bacterial replication initiator and transcription factor DnaA in Bacillus subtilis. Mol Microbiol 2017; 106:109–128 [View Article]
    [Google Scholar]
  56. Katayama T, Ozaki S, Keyamura K, Fujimitsu K. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 2010; 8:163–170 [View Article] [PubMed]
    [Google Scholar]
  57. Scholefield G, Murray H. YabA and DnaD inhibit helix assembly of the DNA replication initiation protein DnaA. Mol Microbiol 2013; 90:147–159 [View Article] [PubMed]
    [Google Scholar]
  58. Felicori L, Jameson KH, Roblin P, Fogg MJ, Garcia-Garcia T et al. Tetramerization and interdomain flexibility of the replication initiation controller YabA enables simultaneous binding to multiple partners. Nucleic Acids Res 2016a; 44:449–463 [View Article]
    [Google Scholar]
  59. Jameson K, Wilkinson A. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli. Genes 2017; 8:22 [View Article]
    [Google Scholar]
  60. Katayama T, Kasho K, Kawakami H. The DnaA Cycle in Escherichia coli: activation, function and inactivation of the initiator protein. Front Microbiol 2017; 8:2496 [View Article] [PubMed]
    [Google Scholar]
  61. Riber L, Frimodt-Møller J, Charbon G, Løbner-Olesen A. Multiple DNA binding proteins contribute to timing of chromosome replication in E. coli. Front Mol Biosci 2016; 3:29 [View Article]
    [Google Scholar]
  62. Skarstad K, Katayama T. Regulating DNA replication in bacteria. Cold Spring Harb Perspect Biol 2013; 5:a012922 [View Article]
    [Google Scholar]
  63. Bonilla CY, Grossman AD. The primosomal protein DnaD inhibits cooperative DNA binding by the replication initiator DnaA in Bacillus subtilis. J Bacteriol 2012; 194:5110–5117 [View Article] [PubMed]
    [Google Scholar]
  64. Martin E, Williams HEL, Pitoulias M, Stevens D, Winterhalter C et al. DNA replication initiation in Bacillus subtilis: structural and functional characterization of the essential DnaA-DnaD interaction. Nucleic Acids Res 2019; 47:2101–2112 [View Article] [PubMed]
    [Google Scholar]
  65. Murray H, Errington J. Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 2008; 135:74–84 [View Article] [PubMed]
    [Google Scholar]
  66. Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 2012; 335:1103–1106 [View Article] [PubMed]
    [Google Scholar]
  67. Kimura T, Amaya Y, Kobayashi K, Ogasawara N, Sato T. Repression of sigK intervening (skin) element gene expression by the CI-like protein SknR and effect of SknR depletion on growth of Bacillus subtilis cells. J Bacteriol 2010; 192:6209–6216 [View Article] [PubMed]
    [Google Scholar]
  68. Kunkel B, Losick R, Stragier P. The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev 1990; 4:525–535 [View Article] [PubMed]
    [Google Scholar]
  69. Marchadier E, Carballido-López R, Brinster S, Fabret C, Mervelet P et al. An expanded protein-protein interaction network in Bacillus subtilis reveals a group of hubs: exploration by an integrative approach. Proteomics 2011; 11:2981–2991 [View Article] [PubMed]
    [Google Scholar]
  70. Noirot-Gros M-F, Dervyn E, Wu LJ, Mervelet P, Errington J et al. An expanded view of bacterial DNA replication. Proc Natl Acad Sci U S A 2002; 99:8342–8347 [View Article] [PubMed]
    [Google Scholar]
  71. Dubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C et al. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol 2016; 101:606–624 [View Article] [PubMed]
    [Google Scholar]
  72. Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE et al. The Spo0A regulon of Bacillus subtilis. Mol Microbiol 2003; 50:1683–1701 [View Article] [PubMed]
    [Google Scholar]
  73. James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 1996; 144:1425–1436 [View Article] [PubMed]
    [Google Scholar]
  74. Durfee T, Nelson R, Baldwin S, Plunkett G 3rd, Burland V et al. The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 2008; 190:2597–2606 [View Article] [PubMed]
    [Google Scholar]
  75. Stragier P, Bonamy C, Karmazyn-Campelli C. Processing of a sporulation sigma factor in Bacillus subtilis: How morphological structure could control gene expression. Cell 1988; 52:697–704 [View Article] [PubMed]
    [Google Scholar]
  76. Weir M, Keeney JB. PCR mutagenesis and gap repair in yeast. Methods Mol Biol 2014; 1205:29–35 [View Article]
    [Google Scholar]
  77. Sterlini JM, Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 1969; 113:29–37 [View Article] [PubMed]
    [Google Scholar]
  78. Noirot-Gros M-F, Velten M, Yoshimura M, McGovern S, Morimoto T et al. Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis. Proc Natl Acad Sci U S A 2006; 103:2368–2373 [View Article] [PubMed]
    [Google Scholar]
  79. Natrajan G, Noirot-Gros MF, Zawilak-Pawlik A, Kapp U, Terradot L. The structure of a DnaA/HobA complex from Helicobacter pylori provides insight into regulation of DNA replication in bacteria. Proc Natl Acad Sci U S A 2009; 106:21115–21120 [View Article] [PubMed]
    [Google Scholar]
  80. Quevillon-Cheruel S, Campo N, Mirouze N, Mortier-Barrière I, Brooks MA et al. Structure-function analysis of pneumococcal DprA protein reveals that dimerization is crucial for loading RecA recombinase onto DNA during transformation. Proc Natl Acad Sci U S A 2012; 109:E2466–75 [View Article]
    [Google Scholar]
  81. Mirouze N, Prepiak P, Dubnau D. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis. PLoS Genet 2011; 7:e1002048 [View Article] [PubMed]
    [Google Scholar]
  82. García García T, Ventroux M, Derouiche A, Bidnenko V, Correia Santos S et al. Phosphorylation of the Bacillus subtilis replication controller YabA plays a role in regulation of sporulation and biofilm formation. Front Microbiol 2018; 9:486 [View Article] [PubMed]
    [Google Scholar]
  83. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596:583–589 [View Article] [PubMed]
    [Google Scholar]
  84. Wu LJ, Errington J. Nucleoid occlusion and bacterial cell division. Nat Rev Microbiol 2011; 10:8–12 [View Article]
    [Google Scholar]
  85. Merrikh H, Grossman AD. Control of the replication initiator DnaA by an anti-cooperativity factor. Mol Microbiol 2011; 82:434–446 [View Article] [PubMed]
    [Google Scholar]
  86. Baldus JM, Green BD, Youngman P, Moran CP Jr. Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak 0A boxes. J Bacteriol 1994; 176:296–306 [View Article] [PubMed]
    [Google Scholar]
  87. Bradshaw N, Levdikov VM, Zimanyi CM, Gaudet R, Wilkinson AJ et al. A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases. Elife 2017; 6:e26111 [View Article]
    [Google Scholar]
  88. Errington J, Wu LJ. Cell cycle machinery in Bacillus subtilis. Subcell Biochem 2017; 84:67–101 [View Article] [PubMed]
    [Google Scholar]
  89. Fujita M, González-Pastor JE, Losick R. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 2005; 187:1357–1368 [View Article] [PubMed]
    [Google Scholar]
  90. Soufo CD, Soufo HJD, Noirot-Gros M-F, Steindorf A, Noirot P et al. Cell-cycle-dependent spatial sequestration of the DnaA replication initiator protein in Bacillus subtilis. Dev Cell 2008; 15:935–941 [View Article] [PubMed]
    [Google Scholar]
  91. Murray H, Koh A. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis. PLoS Genet 2014; 10:e1004731 [View Article] [PubMed]
    [Google Scholar]
  92. Hoover SE, Xu W, Xiao W, Burkholder WF. Changes in DnaA-dependent gene expression contribute to the transcriptional and developmental response of Bacillus subtilis to manganese limitation in Luria-Bertani medium. J Bacteriol 2010; 192:3915–3924 [View Article] [PubMed]
    [Google Scholar]
  93. Seredick SD, Spiegelman GB. The Bacillus subtilis response regulator Spo0A stimulates sigmaA-dependent transcription prior to the major energetic barrier. J Biol Chem 2004; 279:17397–17403 [View Article]
    [Google Scholar]
  94. Jameson KH, Rostami N, Fogg MJ, Turkenburg JP, Grahl A et al. Structure and interactions of the Bacillus subtilis sporulation inhibitor of DNA replication, SirA, with domain I of DnaA. Mol Microbiol 2014; 93:975–991 [View Article] [PubMed]
    [Google Scholar]
  95. Felicori L, Jameson KH, Roblin P, Fogg MJ, Garcia-Garcia T et al. Tetramerization and interdomain flexibility of the replication initiation controller YabA enables simultaneous binding to multiple partners. Nucleic Acids Res 2016b; 44:449–463 [View Article]
    [Google Scholar]
  96. Scholefield G, Veening J-W, Murray H. DnaA and ORC: more than DNA replication initiators. Trends Cell Biol 2011; 21:188–194 [View Article] [PubMed]
    [Google Scholar]
  97. Fujikawa N, Kurumizaka H, Nureki O, Terada T, Shirouzu M et al. Structural basis of replication origin recognition by the DnaA protein. Nucleic Acids Res 2003; 31:2077–2086 [View Article] [PubMed]
    [Google Scholar]
  98. Bobay L-M, Touchon M, Rocha EPC. Pervasive domestication of defective prophages by bacteria. Proc Natl Acad Sci U S A 2014; 111:12127–12132 [View Article] [PubMed]
    [Google Scholar]
  99. Casjens S. Prophages and bacterial genomics: what have we learned so far?. Mol Microbiol 2003; 49:277–300 [View Article] [PubMed]
    [Google Scholar]
  100. Dragoš A, Priyadarshini B, Hasan Z, Strube ML, Kempen PJ et al. Pervasive prophage recombination occurs during evolution of spore-forming Bacilli. ISME J 2021; 15:1344–1358 [View Article] [PubMed]
    [Google Scholar]
  101. Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 2015; 13:641–650 [View Article] [PubMed]
    [Google Scholar]
  102. Haraldsen JD, Sonenshein AL. Efficient sporulation in Clostridium difficile requires disruption of the σK gene. Mol Microbiol 2003; 48:811–821 [View Article] [PubMed]
    [Google Scholar]
  103. Serrano M, Kint N, Pereira FC, Saujet L, Boudry P et al. A recombination directionality factor controls the cell type-specific activation of σK and the fidelity of spore development in Clostridium difficile. PLoS Genet 2016; 12:e1006312 [View Article] [PubMed]
    [Google Scholar]
  104. Abe K, Kawano Y, Iwamoto K, Arai K, Maruyama Y et al. Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis. PLoS Genet 2014; 10:e1004636 [View Article] [PubMed]
    [Google Scholar]
  105. Noguchi Y, Katayama T. The Escherichia coli cryptic prophage protein YfdR binds to DnaA and initiation of chromosomal replication is inhibited by overexpression of the gene cluster yfdQ-yfdR-yfdS-yfdT. Front Microbiol 2016; 7:239 [View Article] [PubMed]
    [Google Scholar]
  106. Sato T, Harada K, Kobayashi Y. Analysis of suppressor mutations of spoIVCA mutations: occurrence of DNA rearrangement in the absence of site-specific DNA recombinase SpoIVCA in Bacillus subtilis. J Bacteriol 1996; 178:3380–3383 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001268
Loading
/content/journal/micro/10.1099/mic.0.001268
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error