1887

Abstract

Several virulence-related traits like pyocyanin are regulated by an intricate regulatory network called quorum sensing (QS) that relies on transcriptional regulators that are activated through binding to a self-produced molecule called an autoinducer (AI). QS is composed of three systems, Las, Rhl and Pqs. In the Las system, the regulatory protein LasR interacts with its AI to activate the other two QS systems. In turn, the Rhl and Pqs systems regulate the expression of multiple virulence-related genes, such as the genes of the reiterated operons and involved in pyocyanin production. The Las system also regulates the negative regulator RsaL, which provides negative feedback to the QS-response, including repression of pyocyanin synthesis genes. In this work, we describe that LasR can act as a negative regulator of transcription and hence of pyocyanin production and that this regulation is independent of RsaL activity. This work contributes to the understanding of QS-dependent pyocyanin production and demonstrates a previously uncharacterized role of LasR as a repressor.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001262
2022-10-27
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/10/mic001262.html?itemId=/content/journal/micro/10.1099/mic.0.001262&mimeType=html&fmt=ahah

References

  1. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7:1–29 [View Article]
    [Google Scholar]
  2. Crone S, Vives-Flórez M, Kvich L, Saunders AM, Malone M et al. The environmental occurrence of Pseudomonas aeruginosa. APMIS 2020; 128:220–231 [View Article]
    [Google Scholar]
  3. Gellatly SL, Hancock REW. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 2013; 67:159–173 [View Article] [PubMed]
    [Google Scholar]
  4. Shrivastava SR, Shrivastava PS, Ramasamy J. Responding to the challenge of antibiotic resistance: World Health Organization. J Res Med Sci 2018; 23:21 [View Article]
    [Google Scholar]
  5. Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 2009; 12:182–191 [View Article]
    [Google Scholar]
  6. Soberón-Chávez G, Aguirre-Ramírez M, Ordóñez L. Is Pseudomonas aeruginosa only “sensing quorum”?. Crit Rev Microbiol 2005; 31:171–182 [View Article] [PubMed]
    [Google Scholar]
  7. García-Reyes S, Soberón-Chávez G, Cocotl-Yanez M. The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein. J Med Microbiol 2020; 69:25–34 [View Article]
    [Google Scholar]
  8. Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M et al. RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol 2007; 66:1557–1565 [View Article]
    [Google Scholar]
  9. Soto-Aceves MP, Cocotl-Yañez M, Servín-González L, Soberón-Chávez G. The Rhl quorum-sensing system is at the top of the regulatory hierarchy under phosphate-limiting conditions in Pseudomonas aeruginosa PAO1. J Bacteriol 2021; 203:eoo475–20 [View Article]
    [Google Scholar]
  10. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP et al. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc Natl Acad Sci U S A 2019; 116:7027–7032 [View Article] [PubMed]
    [Google Scholar]
  11. Jeske A, Arce-Rodriguez A, Thöming JG, Tomasch J, Häussler S. Evolution of biofilm-adapted gene expression profiles in lasR-deficient clinical Pseudomonas aeruginosa isolates. NPJ Biofilms Microbiomes 2022; 8:6 [View Article]
    [Google Scholar]
  12. Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A et al. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 2006; 188:8601–8606 [View Article]
    [Google Scholar]
  13. Mellbye B, Schuster M. Physiological framework for the regulation of quorum sensing-dependent public goods in Pseudomonas aeruginosa. J Bacteriol 2014; 196:1155–1164 [View Article]
    [Google Scholar]
  14. Feltner JB, Wolter DJ, Pope CE, Groleau M-C, Smalley NE et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. mBio 2016; 7:1–9 [View Article]
    [Google Scholar]
  15. Cruz RL, Asfahl KL, Van den Bossche S, Coenye T, Crabbé A et al. RhlR-regulated acyl-homoserine lactone quorum sensing in a cystic fibrosis isolate of Pseudomonas aeruginosa. mBio 2020; 11:e00532-20 [View Article]
    [Google Scholar]
  16. Cocotl-Yañez M, Soto-Aceves MP, González-Valdez A, Servín-González L, Soberón-Chávez G. Virulence factors regulation by the quorum-sensing and Rsm systems in the marine strain Pseudomonas aeruginosa ID4365, a natural mutant in lasR. FEMS Microbiol Lett 2020; 367:fnaa092 [View Article]
    [Google Scholar]
  17. Morales E, González-Valdez A, Servín-González L, Soberón-Chávez G. Pseudomonas aeruginosa quorum-sensing response in the absence of functional LasR and LasI proteins: the case of strain 148, a virulent dolphin isolate. FEMS Microbiol Lett 2017; 364:1–10 [View Article] [PubMed]
    [Google Scholar]
  18. Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 2018; 110:995–1010 [View Article] [PubMed]
    [Google Scholar]
  19. Dietrich LEP, Teal TK, Price-Whelan A, Newman DK. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 2008; 321:1203–1206 [View Article]
    [Google Scholar]
  20. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 2001; 183:6454–6465 [View Article] [PubMed]
    [Google Scholar]
  21. Whiteley M, Greenberg EP. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 2001; 183:5529–5534 [View Article]
    [Google Scholar]
  22. Cabeen MT. Stationary phase-specific virulence factor overproduction by a lasR mutant of Pseudomonas aeruginosa. PLoS One 2014; 9:e88743 [View Article]
    [Google Scholar]
  23. Essar DW, Eberly L, Hadero A, Crawford IP. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 1990; 172:884–900 [View Article]
    [Google Scholar]
  24. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual(Cold Spring Harbor Lab Press; Cold Spring Harbor, NY):, 2nd Ed.
    [Google Scholar]
  25. Cadoret F, Soscia C, Voulhoux R. Gene transfer: transformation/electroporation. Filloux A, Ramos J-L. Pseudomonas Methods and Protocols. Methods in Molecular Biology 1149 New York, NY: Springer Protocols, Humana Press; 2014271–279
    [Google Scholar]
  26. Choi KH, Schweizer HP. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol 2005; 5:30 [View Article]
    [Google Scholar]
  27. Gust B, Chandra G, Jakimowicz D, Yuqing TIAN, Bruton CJ et al. Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 2004; 54:107–128 [View Article] [PubMed]
    [Google Scholar]
  28. García-Reyes S, Soto-Aceves MP, Cocotl-Yañez M, González-Valdez A, Servín-González L et al. The outlier Pseudomonas aeruginosa strain ATCC 9027 harbors a defective LasR quorum-sensing transcriptional regulator. FEMS Microbiol Lett 2020; 367:fnaa122 [View Article] [PubMed]
    [Google Scholar]
  29. Miller JH. Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1972 pp 352–355
    [Google Scholar]
  30. Croda-García G, Grosso-Becerra V, Gonzalez-Valdez A, Servín-González L, Soberón-Chávez G. Transcriptional regulation of Pseudomonas aeruginosa rhlR: role of the CRP orthologue Vfr (virulence factor regulator) and quorum-sensing regulators LasR and RhlR. Microbiology (Reading) 2011; 157:2545–2555 [View Article] [PubMed]
    [Google Scholar]
  31. González-Valdez A, Servín-González L, Juárez K, Hernandez-Aligio A, Soberón-Chávez G. The effect of specific rhlA-las-box mutations on DNA binding and gene activation by Pseudomonas aeruginosa quorum-sensing transcriptional regulators RhlR and LasR. FEMS Microbiol Lett 2014; 356:217–225 [View Article] [PubMed]
    [Google Scholar]
  32. Simons RW, Houman F, Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 1987; 53:85–96 [View Article] [PubMed]
    [Google Scholar]
  33. Elliott T. A method for constructing single-copy lac fusions in Salmonella typhimurium and its application to the hemA-prfA operon. J Bacteriol 1992; 174:245–253 [View Article] [PubMed]
    [Google Scholar]
  34. Casadaban MJ. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 1976; 104:541–555 [View Article] [PubMed]
    [Google Scholar]
  35. Medina G, Juárez K, Díaz R, Soberón-Chávez G. Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 2003; 149:3073–3081 [View Article]
    [Google Scholar]
  36. Seed PC, Passador L, Iglewski BH. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 1995; 177:654–659 [View Article] [PubMed]
    [Google Scholar]
  37. Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997; 179:5756–5767 [View Article] [PubMed]
    [Google Scholar]
  38. Whiteley M, Lee KM, Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1999; 96:13904–13909 [View Article]
    [Google Scholar]
  39. Soto-Aceves MP, Cocotl-Yañez M, Merino E, Castillo-Juárez I, Cortés-López H et al. Inactivation of the quorum-sensing transcriptional regulators LasR or RhlR does not suppress the expression of virulence factors and the virulence of Pseudomonas aeruginosa PAO1. Microbiology 2019; 165:425–432 [View Article]
    [Google Scholar]
  40. Dekimpe V, Déziel E. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 2009; 155:712–723 [View Article]
    [Google Scholar]
  41. Massai F, Rampioni G, Micolonghi C, Messina M, Zennaro E et al. Styrene is sensed by the N-terminal PAS sensor domain of StyS, a double sensor kinase from the styrene-degrading bacterium Pseudomonas fluorescens ST. Ann Microbiol 2015; 65:1177–1182 [View Article]
    [Google Scholar]
  42. Schu DJ, Carlier AL, Jamison KP, von Bodman S, Stevens AM. Structure/function analysis of the Pantoea stewartii quorum-sensing regulator EsaR as an activator of transcription. J Bacteriol 2009; 191:7402–7409 [View Article] [PubMed]
    [Google Scholar]
  43. Letizia M, Mellini M, Fortuna A, Visca P, Imperi F et al. PqsE expands and differentially modulates the RhlR quorum sensing regulon in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0096122 [View Article]
    [Google Scholar]
  44. Higgins S, Heeb S, Rampioni G, Fletcher MP, Williams P et al. Differential Regulation of the Phenazine Biosynthetic Operons by Quorum Sensing in Pseudomonas aeruginosa PAO1-N. Front Cell Infect Microbiol 2018; 8:252 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001262
Loading
/content/journal/micro/10.1099/mic.0.001262
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error