1887

Abstract

During enterobacterial mixed-acid fermentation, formate is generated from pyruvate by the glycyl-radical enzyme pyruvate formate-lyase (PflB). In , especially at low pH, formate is then disproportionated to CO and H by the cytoplasmically oriented, membrane-associated formate hydrogenlyase (FHL) complex. If electron acceptors are available, however, formate is oxidized by periplasmically oriented, respiratory formate dehydrogenases. Formate translocation across the cytoplasmic membrane is controlled by the formate channel, FocA, a member of the formate-nitrite transporter (FNT) family of homopentameric anion channels. This review highlights recent advances in our understanding of how FocA helps to maintain intracellular formate and pH homeostasis during fermentation. Efflux and influx of formate/formic acid are distinct processes performed by FocA and both are controlled through protein interaction between FocA’s N-terminal domain with PflB. Formic acid efflux by FocA helps to maintain cytoplasmic pH balance during exponential-phase growth. Uptake of formate against the electrochemical gradient (inside negative) is energetically and mechanistically challenging for a fermenting bacterium unless coupled with proton/cation symport. Translocation of formate/formic acid into the cytoplasm necessitates an active FHL complex, whose synthesis also depends on formate. Thus, FocA, FHL and PflB function together to govern formate homeostasis. We explain how FocA achieves efflux of formic acid and propose mechanisms for pH-dependent uptake of formate both with and without proton symport. We propose that FocA displays both channel- and transporter-like behaviour. Whether this translocation behaviour is shared by other members of the FNT family is also discussed.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001253
2022-10-05
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/10/mic001253.html?itemId=/content/journal/micro/10.1099/mic.0.001253&mimeType=html&fmt=ahah

References

  1. Knappe J, Sawers G. A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol Rev 1990; 6:383–398 [View Article] [PubMed]
    [Google Scholar]
  2. Pinske C, Sawers RG, Stewart V. Anaerobic formate and hydrogen metabolism. EcoSal Plus 2016; 7:doi:10.1128/ecosalplus.ESP-0011-2016
    [Google Scholar]
  3. Sargent F. The model [NiFe]-hydrogenases of Escherichia coli. Adv Microb Physiol 2016; 68:433–507 [View Article]
    [Google Scholar]
  4. Stephenson M, Stickland LH. Hydrogenlyases: bacterial enzymes liberating molecular hydrogen. Biochem J 1932; 26:712–724 [View Article] [PubMed]
    [Google Scholar]
  5. Rossmann R, Sawers G, Böck A. Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol 1991; 5:2807–2814 [View Article] [PubMed]
    [Google Scholar]
  6. Woods DD. Hydrogenlyases: the synthesis of formic acid by bacteria. Biochem J 1936; 30:515–527 [View Article] [PubMed]
    [Google Scholar]
  7. Hopper S, Böck A. Effector-mediated stimulation of ATPase activity by the sigma 54-dependent transcriptional activator FHLA from Escherichia coli. J Bacteriol 1995; 177:2798–2803 [View Article] [PubMed]
    [Google Scholar]
  8. Suppmann B, Sawers G. Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol 1994; 11:965–982 [View Article]
    [Google Scholar]
  9. Böhm R, Sauter M, Böck A. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 1990; 4:231–243 [View Article] [PubMed]
    [Google Scholar]
  10. Andrews SC, Berks BC, McClay J, Ambler A, Quail MA et al. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 1997; 143:3633–3647 [View Article]
    [Google Scholar]
  11. Pinske C, Sargent F. Exploring the directionality of Escherichia coli formate hydrogenlyase: a membrane-bound enzyme capable of fixing carbon dioxide to organic acid. Microbiologyopen 2016; 5:721–737 [View Article] [PubMed]
    [Google Scholar]
  12. Finney AJ, Lowden R, Fleszar M, Albareda M, Coulthurst SJ et al. The plant pathogen Pectobacterium atrosepticum contains a functional formate hydrogenlyase-2 complex. Mol Microbiol 2019; 112:1440–1452 [View Article] [PubMed]
    [Google Scholar]
  13. Lindenstrauß U, Pinske C. Dissection of the hydrogen metabolism of the Enterobacterium Trabulsiella guamensis: identification of a formate-dependent and essential formate hydrogenlyase complex exhibiting phylogenetic similarity to complex I. J Bacteriol 2019; 201:e00160-19 [View Article]
    [Google Scholar]
  14. Steinhilper R, Höff G, Heider J, Murphy BJ. Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli. Nat Commun 2022; 13:5395 [View Article]
    [Google Scholar]
  15. Skibinski DAG, Golby P, Chang Y-S, Sargent F, Hoffman R et al. Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma(54)-dependent transcriptional activators FhlA and HyfR. J Bacteriol 2002; 184:6642–6653 [View Article] [PubMed]
    [Google Scholar]
  16. Mirzoyan S, Romero-Pareja PM, Coello MD, Trchounian A, Trchounian K. Evidence for hydrogenase-4 catalyzed biohydrogen production in Escherichia coli. Int J Hydrogen Energy 2017; 42:21697–21703 [View Article]
    [Google Scholar]
  17. Matsumura Y, Al-saari H, Mino S, Nakagawa S, Maruyama F et al. Identification of a gene cluster responsible for hydrogen evolution in Vibrio tritonius strain AM2 with transcriptional analyses. Int J Hydrogen Energy 2015; 40:9137–9146 [View Article]
    [Google Scholar]
  18. Zinoni F, Birkmann A, Stadtman TC, Böck A. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci USA 1986; 83:4650–4654 [View Article]
    [Google Scholar]
  19. Leonhartsberger S, Korsa I, Böck A. The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol 2002; 4:269–276
    [Google Scholar]
  20. Korsa I, Böck A. Characterization of fhlA mutations resulting in ligand-independent transcriptional activation and ATP hydrolysis. J Bacteriol 1997; 179:41–45 [View Article] [PubMed]
    [Google Scholar]
  21. Sauter M, Böhm R, Böck A. Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 1992; 6:1523–1532 [View Article] [PubMed]
    [Google Scholar]
  22. Xu Y, Zhao Z, Tong W, Ding Y, Liu B et al. An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat Commun 2020; 11:1496 [View Article]
    [Google Scholar]
  23. Kammel M, Sawers RG. The FocA channel functions to maintain intracellular formate homeostasis during Escherichia coli fermentation. Microbiology 2022; 168:001168 [View Article]
    [Google Scholar]
  24. Knappe J, Neugebauer FA, Blaschkowski HP, Gänzler M. Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci USA 1984; 81:1332–1335 [View Article]
    [Google Scholar]
  25. Backman LRF, Funk MA, Dawson CD, Drennan CL. New tricks for the glycyl radical enzyme family. Crit Rev Biochem Mol Biol 2017; 52:674–695 [View Article] [PubMed]
    [Google Scholar]
  26. Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 1977; 41:100–180 [View Article] [PubMed]
    [Google Scholar]
  27. Wagner AFV, Frey M, Neugebauer FA, Schäfer W, Knappe J. The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci USA 1992; 89:996–1000 [View Article]
    [Google Scholar]
  28. Conradt H, Hohmann-Berger M, Hohmann HP, Blaschkowski HP, Knappe J. Pyruvate formate-lyase (inactive form) and pyruvate formate-lyase activating enzyme of Escherichia coli: isolation and structural properties. Arch Biochem Biophys 1984; 228:133–142 [View Article] [PubMed]
    [Google Scholar]
  29. Külzer R, Pils T, Kappl R, Hüttermann J, Knappe J. Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J Biol Chem 1998; 273:4897–4903 [View Article]
    [Google Scholar]
  30. Vey JL, Yang J, Li M, Broderick WE, Broderick JB et al. Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proc Natl Acad Sci USA 2008; 105:16137–16141 [View Article]
    [Google Scholar]
  31. Becker A, Fritz-Wolf K, Kabsch W, Knappe J, Schultz S et al. Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat Struct Biol 1999; 6:969–975 [View Article] [PubMed]
    [Google Scholar]
  32. Unkrig V, Neugebauer FA, Knappe J. The free radical of pyruvate formate-lyase. Characterization by EPR spectroscopy and involvement in catalysis as studied with the substrate-analogue hypophosphite. Eur J Biochem 1989; 184:723–728 [View Article]
    [Google Scholar]
  33. Parast CV, Wong KK, Lewisch SA, Kozarich JW, Peisach J et al. Hydrogen exchange of the glycyl radical of pyruvate formate-lyase is catalyzed by cysteine 419. Biochemistry 1995; 34:2393–2399 [View Article] [PubMed]
    [Google Scholar]
  34. Becker A, Kabsch W. X-ray structure of pyruvate formate-lyase in complex with pyruvate and CoA. How the enzyme uses the Cys-418 thiyl radical for pyruvate cleavage. J Biol Chem 2002; 277:40036–40042 [View Article] [PubMed]
    [Google Scholar]
  35. Doberenz C, Zorn M, Falke D, Nannemann D, Hunger D et al. Pyruvate formate-lyase interacts directly with the formate channel FocA to regulate formate translocation. J Mol Biol 2014; 426:2827–2839 [View Article] [PubMed]
    [Google Scholar]
  36. Kammel M, Hunger D, Sawers RG. The soluble cytoplasmic N-terminal domain of the FocA channel gates bidirectional formate translocation. Mol Microbiol 2021; 115:758–773 [View Article] [PubMed]
    [Google Scholar]
  37. Sawers G, Böck A. Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J Bacteriol 1988; 170:5330–5336 [View Article] [PubMed]
    [Google Scholar]
  38. Sawers G, Böck A. Novel transcriptional control of the pyruvate formate-lyase gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol 1989; 171:2485–2498 [View Article] [PubMed]
    [Google Scholar]
  39. Sawers G, Watson G. A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 1998; 29:945–954 [View Article] [PubMed]
    [Google Scholar]
  40. Sauter M, Sawers RG. Transcriptional analysis of the gene encoding pyruvate formate-lyase-activating enzyme of Escherichia coli. Mol Microbiol 1990; 4:355–363 [View Article] [PubMed]
    [Google Scholar]
  41. White WB, Ferry JG. Identification of formate dehydrogenase-specific mRNA species and nucleotide sequence of the fdhC gene of Methanobacterium formicicum. J Bacteriol 1992; 174:4997–5004 [View Article] [PubMed]
    [Google Scholar]
  42. Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S et al. Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem 1990; 191:315–323 [View Article] [PubMed]
    [Google Scholar]
  43. Plaga W, Frank R, Knappe J. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate). Eur J Biochem 1988; 178:445–450 [View Article] [PubMed]
    [Google Scholar]
  44. Saier MH Jr, Eng BH, Fard S, Garg J, Haggerty DA et al. Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1999; 1422:1–56 [View Article] [PubMed]
    [Google Scholar]
  45. Mukherjee M, Vajpai M, Sankararamakrishnan R. Anion-selective formate/nitrite transporters: taxonomic distribution, phylogenetic analysis and subfamily-specific conservation pattern in prokaryotes. BMC Genomics 2017; 18:560 [View Article] [PubMed]
    [Google Scholar]
  46. Erler H, Ren B, Gupta N, Beitz E. The intracellular parasite Toxoplasma gondii harbors three druggable FNT-type formate and L-lactate transporters in the plasma membrane. J Biol Chem 2018; 293:17622–17630 [View Article] [PubMed]
    [Google Scholar]
  47. Jia W, Cole JA. Nitrate and nitrite transport in Escherichia coli. Biochem Soc Trans 2005; 33:159–161 [View Article] [PubMed]
    [Google Scholar]
  48. Czyzewski BK, Wang DN. Identification and characterization of a bacterial hydrosulphide ion channel. Nature 2012; 483:494–497 [View Article] [PubMed]
    [Google Scholar]
  49. W, Du J, Wacker T, Gerbig-Smentek E, Andrade SLA et al. pH-dependent gating in a FocA formate channel. Science 2011; 332:352–354 [View Article] [PubMed]
    [Google Scholar]
  50. W, Schwarzer NJ, Du J, Gerbig-Smentek E, Andrade SLA et al. Structural and functional characterization of the nitrite channel NirC from Salmonella typhimurium. Proc Natl Acad Sci USA 2012; 109:18395–18400 [View Article]
    [Google Scholar]
  51. Waight AB, Love J, Wang D-N. Structure and mechanism of a pentameric formate channel. Nat Struct Mol Biol 2010; 17:31–37 [View Article] [PubMed]
    [Google Scholar]
  52. Wu B, Rambow J, Bock S, Holm-Bertelsen J, Wiechert M et al. Identity of a plasmodium lactate/H(+) symporter structurally unrelated to human transporters. Nat Commun 2015; 6:6284 [View Article]
    [Google Scholar]
  53. Wang Y, Huang Y, Wang J, Cheng C, Huang W et al. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 2009; 462:467–472 [View Article] [PubMed]
    [Google Scholar]
  54. Sui H, Han BG, Lee JK, Walian P, Jap BK. Structural basis of water-specific transport through the AQP1 water channel. Nature 2001; 414:872–878 [View Article] [PubMed]
    [Google Scholar]
  55. Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H et al. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 2009; 1788:1213–1228 [View Article] [PubMed]
    [Google Scholar]
  56. von Heijne G. The membrane protein universe: what’s out there and why bother?. J Intern Med 2007; 261:543–557 [View Article] [PubMed]
    [Google Scholar]
  57. Stroud RM, Savage D, Miercke LJW, Lee JK, Khademi S et al. Selectivity and conductance among the glycerol and water conducting aquaporin family of channels. FEBS Lett 2003; 555:79–84 [View Article] [PubMed]
    [Google Scholar]
  58. Lv X, Liu H, Ke M, Gong H. Exploring the pH-dependent substrate transport mechanism of FocA using molecular dynamics simulation. Biophys J 2013; 105:2714–2723 [View Article] [PubMed]
    [Google Scholar]
  59. Atkovska K, Hub JS. Energetics and mechanism of anion permeation across formate-nitrite transporters. Sci Rep 2017; 7:12027 [View Article]
    [Google Scholar]
  60. W, Du J, Schwarzer NJ, Wacker T, Andrade SLA et al. The formate/nitrite transporter family of anion channels. Biol Chem 2013; 394:715–727 [View Article] [PubMed]
    [Google Scholar]
  61. Waight AB, Czyzewski BK, Wang D-N. Ion selectivity and gating mechanisms of FNT channels. Curr Opin Struct Biol 2013; 23:499–506 [View Article] [PubMed]
    [Google Scholar]
  62. Wiechert M, Erler H, Golldack A, Beitz E. A widened substrate selectivity filter of eukaryotic formate-nitrite transporters enables high-level lactate conductance. FEBS J 2017; 284:2663–2673 [View Article] [PubMed]
    [Google Scholar]
  63. W, Du J, Schwarzer NJ, Gerbig-Smentek E, Einsle O et al. The formate channel FocA exports the products of mixed-acid fermentation. Proc Natl Acad Sci USA 2012; 109:13254–13259 [View Article]
    [Google Scholar]
  64. Beyer L, Doberenz C, Falke D, Hunger D, Suppmann B et al. Coordination of FocA and pyruvate formate-lyase synthesis in Escherichia coli demonstrates preferential translocation of formate over other mixed-acid fermentation products. J Bacteriol 2013; 195:1428–1435 [View Article] [PubMed]
    [Google Scholar]
  65. Kammel M, Trebbin O, Pinske C, Sawers RG. A single amino acid exchange converts FocA into a unidirectional efflux channel for formate. Microbiology 2022; 168:001132 [View Article]
    [Google Scholar]
  66. Kammel M, Trebbin O, Sawers RG. Interplay between the conserved pore residues Thr-91 and His-209 controls formate translocation through the FocA channel. Microb Physiol 2022; 32:95–107 [View Article]
    [Google Scholar]
  67. Theobald DL, Miller C. Membrane transport proteins: surprises in structural sameness. Nat Struct Mol Biol 2010; 17:2–3 [View Article] [PubMed]
    [Google Scholar]
  68. Wiechert M, Beitz E. Mechanism of formate-nitrite transporters by dielectric shift of substrate acidity. EMBO J 2017; 36:949–958 [View Article] [PubMed]
    [Google Scholar]
  69. Lyu M, Su CC, Kazura JW, Yu EW. Structural basis of transport and inhibition of the Plasmodium falciparum transporter PfFNT. EMBO Rep 2021; 22:e53596 [View Article]
    [Google Scholar]
  70. Helmstetter F, Arnold P, Höger B, Petersen LM, Beitz E. Formate-nitrite transporters carrying nonprotonatable amide amino acids instead of a central histidine maintain pH-dependent transport. J Biol Chem 2019; 294:623–631 [View Article] [PubMed]
    [Google Scholar]
  71. Loftus B, Anderson I, Davies R, Alsmark UCM, Samuelson J et al. The genome of the protist parasite Entamoeba histolytica. Nature 2005; 433:865–868 [View Article] [PubMed]
    [Google Scholar]
  72. Smeulders MJ, Peeters SH, van Alen T, de Bruijckere D, Nuijten GHL et al. Nutrient limitation causes differential expression of transport- and metabolism genes in the compartmentalized anammox bacterium Kuenenia stuttgartiensis. Front Microbiol 2020; 11:1959 [View Article]
    [Google Scholar]
  73. Otto R, Sonnenberg AS, Veldkamp H, Konings WN. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc Natl Acad Sci USA 1980; 77:5502–5506 [View Article]
    [Google Scholar]
  74. Konings WN. The cell membrane and the struggle for life of lactic acid bacteria. Antonie van Leeuwenhoek 2002; 82:3–27 [View Article]
    [Google Scholar]
  75. Hunger D, Doberenz C, Sawers RG. Identification of key residues in the formate channel FocA that control import and export of formate. Biol Chem 2014; 395:813–825 [View Article] [PubMed]
    [Google Scholar]
  76. Kammel M, Sawers RG. Distinguishing functional from structural roles of conserved pore residues during formate translocation by the FocA anion channel. Microbiologyopen 2022; 11:e1312 [View Article] [PubMed]
    [Google Scholar]
  77. Sankaranarayanan R, Cherney MM, Garen C, Garen G, Niu C et al. The molecular structure of ornithine acetyltransferase from Mycobacterium tuberculosis bound to ornithine, a competitive inhibitor. J Mol Biol 2010; 397:979–990 [View Article] [PubMed]
    [Google Scholar]
  78. Metcalfe GD, Sargent F, Hippler M. Hydrogen production in the presence of oxygen by Escherichia coli K-12. Microbiology 2022; 168:001167 [View Article]
    [Google Scholar]
  79. Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS One 2010; 5:e10132 [View Article]
    [Google Scholar]
  80. Vivijs B, Haberbeck LU, Baiye Mfortaw Mbong V, Bernaerts K, Geeraerd AH et al. Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria. Front Microbiol 2015; 6:150 [View Article]
    [Google Scholar]
  81. Arias-Cartín R, Uzel A, Seduk F, Gerbaud G, Pierrel F et al. Identification and characterization of a noncanonical menaquinone-linked formate dehydrogenase. J Biol Chem 2022; 298:101384 [View Article] [PubMed]
    [Google Scholar]
  82. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP et al. Aquaporin water channels – from atomic structure to clinical medicine. J Physiol 2002; 542:3–16 [View Article]
    [Google Scholar]
  83. Coutts G, Thomas G, Blakey D, Merrick M. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 2002; 21:536–545 [View Article] [PubMed]
    [Google Scholar]
  84. Hariharan P, Balasubramaniam D, Peterkofsky A, Kaback HR, Guan L. Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIAGlc. Proc Natl Acad Sci USA 2015; 112:2407–2412 [View Article]
    [Google Scholar]
  85. Roche JV, Törnroth-Horsefield S. Aquaporin protein-protein interactions. Int J Mol Sci 2017; 18:2255 [View Article]
    [Google Scholar]
  86. Jormakka M, Törnroth S, Byrne B, Iwata S. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 2002; 295:1863–1868 [View Article] [PubMed]
    [Google Scholar]
  87. Pravda L, Sehnal D, Toušek D, Navrátilová V, Bazgier V et al. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res 2018; 46:W368–W373 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001253
Loading
/content/journal/micro/10.1099/mic.0.001253
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error