1887

Abstract

The study of adaptive microbial evolution in the laboratory can illuminate the genetic mechanisms of gaining fitness under a pre-defined set of selection factors. Laboratory evolution of bacteria under long-term starvation has gained importance in recent years because of its ability to uncover adaptive strategies that overcome prolonged nutrient limitation, a condition often encountered by natural microbes. In this evolutionary paradigm, bacteria are maintained in an energy-restricted environment in a growth phase called long-term stationary phase (LTSP). This phase is characterized by a stable, viable population size and highly dynamic genetic changes. Multiple independent iterations of LTSP evolution experiments have given rise to mutants that are slow-growing compared to the ancestor. Although the antagonistic regulation between rapid growth and the stress response is well-known in bacteria (especially ), the growth deficit of many LTSP-adapted mutants has not been explored in detail. In this review, I pinpoint the trade-off between growth and stress response as a dominant driver of evolutionary strategies under prolonged starvation. Focusing on mainly -based research, I discuss the various affectors and regulators of the competition between sigma factors to occupy their targets on the genome, and assess its effect on growth advantage in stationary phase (GASP). Finally, I comment on some crucial issues that hinder the progress of the field, including identification of novel metabolites in nutrient-depleted media, and the importance of using multidisciplinary research to resolve them.

Funding
This study was supported by the:
  • Max-Planck-Gesellschaft (Award OA under Publish and READ)
    • Principle Award Recipient: PabitraNandy
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001195
2022-05-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/5/mic001195.html?itemId=/content/journal/micro/10.1099/mic.0.001195&mimeType=html&fmt=ahah

References

  1. Sandler T. History and development of microbiological culture media. J Inst Sci Technol 201110–14
    [Google Scholar]
  2. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533:543–546 [View Article] [PubMed]
    [Google Scholar]
  3. Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol 2018; 16:540–550 [View Article] [PubMed]
    [Google Scholar]
  4. Hofer U. Feast and famine: the keys to gut engraftment. Nat Rev Microbiol 2018; 16:520 [View Article] [PubMed]
    [Google Scholar]
  5. Jørgensen BB, Boetius A. Feast and famine--microbial life in the deep-sea bed. Nat Rev Microbiol 2007; 5:770–781 [View Article] [PubMed]
    [Google Scholar]
  6. Himeoka Y, Mitarai N. Dynamics of bacterial populations under the feast-famine cycles. Phys Rev Research 2020; 2: [View Article]
    [Google Scholar]
  7. Gray DA, Dugar G, Gamba P, Strahl H, Jonker MJ et al. Extreme slow growth as alternative strategy to survive deep starvation in bacteria. Nat Commun 2019; 10:1–12 [View Article] [PubMed]
    [Google Scholar]
  8. Ratib NR, Seidl F, Ehrenreich IM, Finkel SE. Evolution in long-term stationary-phase batch culture: emergence of divergent Escherichia coli lineages over 1,200 Days. mBio 2021; 12:e03337-20 [View Article] [PubMed]
    [Google Scholar]
  9. Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J 2014; 8:1553–1565 [View Article] [PubMed]
    [Google Scholar]
  10. Higgins D, Dworkin J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 2012; 36:131–148 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang Z, Du C, de Barsy F, Liem M, Liakopoulos A et al. Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. Sci Adv 2020; 6:eaay5781 [View Article] [PubMed]
    [Google Scholar]
  12. Finkel SE. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol 2006; 4:113–120 [View Article] [PubMed]
    [Google Scholar]
  13. Avrani S, Katz S, Hershberg R. Adaptations accumulated under prolonged resource exhaustion are highly transient. mSphere 2020; 5:e00388-20 [View Article] [PubMed]
    [Google Scholar]
  14. Esteve-Núñez A, Rothermich M, Sharma M, Lovley D. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ Microbiol 2005; 7:641–648 [View Article] [PubMed]
    [Google Scholar]
  15. Paul K, Ghosh A, Sengupta N, Chowdhury R. Competitive growth advantage of nontoxigenic mutants in the stationary phase in archival cultures of pathogenic Vibrio cholerae strains. Infect Immun 2004; 72:5478–5482 [View Article] [PubMed]
    [Google Scholar]
  16. Bruno JC, Freitag NE. Listeria monocytogenes adapts to long-term stationary phase survival without compromising bacterial virulence. FEMS Microbiol Lett 2011; 323:171–179 [View Article] [PubMed]
    [Google Scholar]
  17. Machreki Y, Kouidhi B, Machreki S, Chaieb K, Sáenz Y. Analysis of a long term starved Pseudomonas aeruginosa ATCC27853 in seawater microcosms. Microb Pathog 2019; 134:103595 [View Article] [PubMed]
    [Google Scholar]
  18. Aouizerat T, Gelman D, Szitenberg A, Gutman I, Glazer S et al. Eukaryotic adaptation to years-long starvation resembles that of bacteria. iScience 2019; 19:545–558 [View Article] [PubMed]
    [Google Scholar]
  19. Barrick JE, Lenski RE. Genome dynamics during experimental evolution. Nat Rev Genet 2013; 14:827–839 [View Article] [PubMed]
    [Google Scholar]
  20. Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature 2017; 551:45–50 [View Article] [PubMed]
    [Google Scholar]
  21. Lenski RE. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J 2017; 11:2181–2194 [View Article] [PubMed]
    [Google Scholar]
  22. Ferenci T. Maintaining a healthy SPANC balance through regulatory and mutational adaptation. Mol Microbiol 2005; 57:1–8 [View Article] [PubMed]
    [Google Scholar]
  23. Ferenci T. Regulation by nutrient limitation. Curr Opin Microbiol 1999; 2:208–213 [View Article] [PubMed]
    [Google Scholar]
  24. Zambrano MM, Kolter R. GASPing for life in stationary phase. Cell 1996; 86:181–184 [View Article] [PubMed]
    [Google Scholar]
  25. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 2002; 418:630–633 [View Article] [PubMed]
    [Google Scholar]
  26. Pulschen AA, Bendia AG, Fricker AD, Pellizari VH, Galante D et al. Isolation of uncultured bacteria from antarctica using long incubation periods and low nutritional media. Front Microbiol 2017; 8:1346 [View Article] [PubMed]
    [Google Scholar]
  27. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P et al. Small colony variants: A pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 2006; 4:295–305 [View Article] [PubMed]
    [Google Scholar]
  28. Gibson B, Wilson DJ, Feil E, Eyre-Walker A. The distribution of bacterial doubling times in the wild. Proc Biol Sci 2018; 285:1880 [View Article] [PubMed]
    [Google Scholar]
  29. Biselli E, Schink SJ, Gerland U. Slower growth of Escherichia coli leads to longer survival in carbon starvation due to a decrease in the maintenance rate. Mol Syst Biol 2020; 16:e9478 [View Article] [PubMed]
    [Google Scholar]
  30. Nandy P, Chib S, Seshasayee A. A Mutant RNA polymerase activates the general stress response, enabling Escherichia coli adaptation to late prolonged stationary phase. mSphere 2020; 5:1–16 [View Article] [PubMed]
    [Google Scholar]
  31. Britos L, Abeliuk E, Taverner T, Lipton M, McAdams H et al. Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One 2011; 6:e18179 [View Article] [PubMed]
    [Google Scholar]
  32. Aurass P, Düvel J, Karste S, Nübel U, Rabsch W et al. glnA Truncation in Salmonella enterica results in a small colony variant phenotype, attenuated host cell entry, and reduced expression of flagellin and SPI-1-associated effector genes. Appl Environ Microbiol 2018; 84:e01838-17 [View Article] [PubMed]
    [Google Scholar]
  33. Pontes MH, Groisman EA. Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci Signal 2019; 12:3938 [View Article] [PubMed]
    [Google Scholar]
  34. Roggenkamp A, Sing A, Hornef M, Brunner U, Autenrieth IB et al. Chronic prosthetic hip infection caused by a small-colony variant of Escherichia coli. . J Clin Microbiol 1998; 36:2530–2534 [View Article] [PubMed]
    [Google Scholar]
  35. Wei Q, Tarighi S, Dötsch A, Häussler S, Müsken M et al. Phenotypic and genome-wide analysis of an antibiotic-resistant small colony variant (SCV) of Pseudomonas aeruginosa. PLoS One 2011; 6:e29276 [View Article] [PubMed]
    [Google Scholar]
  36. Bachmann NL, Salamzade R, Manson AL, Whittington R, Sintchenko V et al. Key transitions in the evolution of rapid and slow growing Mycobacteria identified by comparative genomics. Front Microbiol 2019; 10:3019 [View Article] [PubMed]
    [Google Scholar]
  37. Ramnaresh Gupta K, Chatterji D. Sigma factor competition in escherichia coli: kinetic and thermodynamic perspectives. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, FJ de Bruijn (Ed) 2016196–202
    [Google Scholar]
  38. Jacobsen KA. Mitteilungen über einen variablen typhusstamm (bacterium typhi mutabile), sowie über eine eigentümliche hemmende wirkung des gewöhnlichen agar, verursacht durch autoklavierung. Zentralbl Bakteriol 1910; 56:208–216
    [Google Scholar]
  39. Colwell CA. Small Colony Variants of Escherichia coli. J Bacteriol 1946; 52:417–422 [View Article] [PubMed]
    [Google Scholar]
  40. CLOWES RC, ROWLEY D. Genetic studies on small-colony variants of Escherichia coli K-12. J Gen Microbiol 1955; 13:461–473 [View Article] [PubMed]
    [Google Scholar]
  41. Balwit JM, Langevelde P v., Vann JM, Proctor RA. Gentamicin-resistant menadione and hemin auxotrophic staphylococcus aureus persist within cultured endothelial cells. J Infect Dis 1994; 170:1033–1037 [View Article] [PubMed]
    [Google Scholar]
  42. Evans TJ. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol 2015; 10:231–239 [View Article] [PubMed]
    [Google Scholar]
  43. Baddour LM, Barker LP, Christensen GD, Parisi JT, Simpson WA. Phenotypic variation of Staphylococcus epidermidis in infection of transvenous endocardial pacemaker electrodes. J Clin Microbiol 1990; 28:676–679 [View Article] [PubMed]
    [Google Scholar]
  44. Mowjood M, Miller FE, Schor J, Kocka FE. Small-colony forms of enteric bacteria after exposure to aminoglycosides. Am J Clin Pathol 1979; 72:79–81 [View Article]
    [Google Scholar]
  45. Raven C. Dissociation of the Gonococcus. J Infect Dis 1934; 55:328–339 [View Article]
    [Google Scholar]
  46. Westphal LL, Lau J, Negro Z, Moreno IJ, Ismail Mohammed W et al. Adaptation of Escherichia coli to long-term batch culture in various rich media. Res Microbiol 2018; 169:145–156 [View Article] [PubMed]
    [Google Scholar]
  47. Zinser ER, Kolter R. Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase. J Bacteriol 1999; 181:5800–5807 [View Article] [PubMed]
    [Google Scholar]
  48. Katz S, Avrani S, Yavneh M, Hilau S, Gross J et al. Dynamics of adaptation during three years of evolution under long-term stationary phase. Mol Biol Evol 2021; 38:2778–2790 [View Article] [PubMed]
    [Google Scholar]
  49. Avrani S, Bolotin E, Katz S, Hershberg R. Rapid genetic adaptation during the first four months of survival under resource exhaustion. Mol Biol Evol 2017; 34:1758–1769 [View Article] [PubMed]
    [Google Scholar]
  50. Chib S, Ali F, Seshasayee ASN, Phase PS. Genomewide mutational diversity in Escherichia coli population evolving in prolonged stationary phase. mSphere 2017; 2:1–15 [View Article] [PubMed]
    [Google Scholar]
  51. Notley L, Ferenci T. Induction of RpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase of Escherichia coli?. J Bacteriol 1996; 178:1465–1468 [View Article] [PubMed]
    [Google Scholar]
  52. Chang D-E, Smalley DJ, Tucker DL, Leatham MP, Norris WE et al. Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 2004; 101:7427–7432 [View Article] [PubMed]
    [Google Scholar]
  53. Klumpp S, Hwa T. Bacterial growth: global effects on gene expression, growth feedback and proteome partition. Curr Opin Biotechnol 2014; 28:96–102 [View Article] [PubMed]
    [Google Scholar]
  54. Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 2011; 65:189–213 [View Article] [PubMed]
    [Google Scholar]
  55. Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 1993; 72:165–168 [View Article] [PubMed]
    [Google Scholar]
  56. Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010; 34:476–495 [View Article] [PubMed]
    [Google Scholar]
  57. Kolter R, Siegele DA, Tormo A. The stationary phase of the bacterial life cycle. Annu Rev Microbiol 1993; 47:855–874 [View Article] [PubMed]
    [Google Scholar]
  58. King T, Ishihama A, Kori A, Ferenci T. A regulatory trade-off as A source of strain variation in the species Escherichia coli. . J Bacteriol 2004; 186:5614–5620 [View Article] [PubMed]
    [Google Scholar]
  59. Gourse RL, Gaal T, Bartlett MS, Appleman JA, Ross W. rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. Annu Rev Microbiol 1996; 50:645–677 [View Article] [PubMed]
    [Google Scholar]
  60. Gaal T, Bartlett MS, Ross W, Turnbough CL, Gourse RL. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 1997; 278:2092–2097 [View Article] [PubMed]
    [Google Scholar]
  61. Jishage M, Kvint K, Shingler V, Nyström T. Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev 2002; 16:1260–1270 [View Article] [PubMed]
    [Google Scholar]
  62. Farrell MJ, Finkel SE. The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment. J Bacteriol 2003; 185:7044–7052 [View Article] [PubMed]
    [Google Scholar]
  63. Serbanescu D, Ojkic N, Banerjee S. Nutrient-dependent trade-offs between ribosomes and division protein synthesis control bacterial cell size and growth. Cell Rep 2020; 32:108183 [View Article] [PubMed]
    [Google Scholar]
  64. Cosgriff S, Chintakayala K, Chim YTA, Chen X, Allen S et al. Dimerization and DNA-dependent aggregation of the Escherichia coli nucleoid protein and chaperone CbpA. Mol Microbiol 2010; 77:1289–1300 [View Article] [PubMed]
    [Google Scholar]
  65. Johansen J, Rasmussen AA, Overgaard M, Valentin-Hansen P. Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J Mol Biol 2006; 364:1–8 [View Article] [PubMed]
    [Google Scholar]
  66. Nyström T. Growth versus maintenance: a trade-off dictated by RNA polymerase availability and sigma factor competition?. Mol Microbiol 2004; 54:855–862 [View Article] [PubMed]
    [Google Scholar]
  67. Notley-McRobb L, King T, Ferenci T. rpoS mutations and loss of general stress resistance in Escherichia coli populations as a consequence of conflict between competing stress responses. J Bacteriol 2002; 184:806–811 [View Article] [PubMed]
    [Google Scholar]
  68. Jishage M, Ishihama A. Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J Bacteriol 1997; 179:959–963 [View Article] [PubMed]
    [Google Scholar]
  69. Helmus RA, Liermann LJ, Brantley SL, Tien M. Growth advantage in stationary-phase (GASP) phenotype in long-term survival strains of Geobacter sulfurreducens. FEMS Microbiol Ecol 2012; 79:218–228 [View Article] [PubMed]
    [Google Scholar]
  70. Jishage M, Ishihama A. Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of sigma 70 and sigma 38. J Bacteriol 1995; 177:6832–6835 [View Article] [PubMed]
    [Google Scholar]
  71. Kussell E, Kishony R, Balaban NQ, Leibler S. Bacterial persistence: A model of survival in changing environments. Genetics 2005; 169:1807–1814 [View Article] [PubMed]
    [Google Scholar]
  72. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science 2004; 305:1622–1625 [View Article] [PubMed]
    [Google Scholar]
  73. Gasperotti A, Brameyer S, Fabiani F, Jung K. Phenotypic heterogeneity of microbial populations under nutrient limitation. Curr Opin Biotechnol 2020; 62:160–167 [View Article] [PubMed]
    [Google Scholar]
  74. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. Regulation of noise in the expression of a single gene. Nat Genet 2002; 31:69–73 [View Article] [PubMed]
    [Google Scholar]
  75. Raser JM, O’Shea EK. Control of stochasticity in eukaryotic gene expression. Science 2004; 304:1811–1814 [View Article] [PubMed]
    [Google Scholar]
  76. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 2006; 441:840–846 [View Article] [PubMed]
    [Google Scholar]
  77. Paulsson J. Summing up the noise in gene networks. Nature 2004; 427:415–418 [View Article] [PubMed]
    [Google Scholar]
  78. Angeli D, Ferrell JE, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci U S A 2004; 101:1822–1827 [View Article] [PubMed]
    [Google Scholar]
  79. Norman TM, Lord ND, Paulsson J, Losick R. Stochastic Switching of Cell Fate in Microbes. Annu Rev Microbiol 2015; 69:381–403 [View Article] [PubMed]
    [Google Scholar]
  80. Chen G, Patten CL, Schellhorn HE. Positive selection for loss of RpoS function in Escherichia coli. Mutat Res 2004; 554:193–203 [View Article] [PubMed]
    [Google Scholar]
  81. Traxler MF, Summers SM, Nguyen H-T, Zacharia VM, Hightower GA et al. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2008; 68:1128–1148 [View Article] [PubMed]
    [Google Scholar]
  82. Durfee T, Hansen A-M, Zhi H, Blattner FR, Jin DJ. Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 2008; 190:1084–1096 [View Article] [PubMed]
    [Google Scholar]
  83. Chib S, Seshasayee AS. Modulation of rpos fitness by loss of cpda activity during stationary-phase in Escherichia coli. biorxiv 20181–24
    [Google Scholar]
  84. Lange R, Hengge-Aronis R. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 1994; 8:1600–1612 [View Article]
    [Google Scholar]
  85. Barth E, Gora KV, Gebendorfer KM, Settele F, Jakob U et al. Interplay of cellular cAMP levels, {sigma}S activity and oxidative stress resistance in Escherichia coli. Microbiology (Reading) 2009; 155:1680–1689 [View Article] [PubMed]
    [Google Scholar]
  86. Mika F, Hengge R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev 2005; 19:2770–2781 [View Article] [PubMed]
    [Google Scholar]
  87. Cunning C, Brown L, Elliott T. Promoter substitution and deletion analysis of upstream region required for rpoS translational regulation. J Bacteriol 1998; 180:4564–4570 [View Article] [PubMed]
    [Google Scholar]
  88. Zhang A, Altuvia S, Tiwari A, Argaman L, Hengge-Aronis R et al. The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 1998; 17:6061–6068 [View Article] [PubMed]
    [Google Scholar]
  89. Phadtare S, Inouye M. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol 2001; 183:1205–1214 [View Article] [PubMed]
    [Google Scholar]
  90. Balandina A, Claret L, Hengge-Aronis R, Rouviere-Yaniv J. The Escherichia coli histone-like protein HU regulates rpoS translation. Mol Microbiol 2001; 39:1069–1079 [View Article] [PubMed]
    [Google Scholar]
  91. Resch A, Većerek B, Palavra K, Bläsi U. Requirement of the CsdA DEAD-box helicase for low temperature riboregulation of rpoS mRNA. RNA Biol 2010; 7:796–802 [View Article] [PubMed]
    [Google Scholar]
  92. Schweder T, Lee KHO, Lomovskaya O, Matin A. Regulation of Escherichia coli starvation sigma factor (sigma S) by ClpXP protease. J Bacteriol 1996; 178:470–476 [View Article] [PubMed]
    [Google Scholar]
  93. Klauck E, Lingnau M, Hengge-Aronis R. Role of the response regulator RssB in sigma recognition and initiation of sigma proteolysis in Escherichia coli. Mol Microbiol 2001; 40:1381–1390 [View Article] [PubMed]
    [Google Scholar]
  94. Bougdour A, Cunning C, Baptiste PJ, Elliott T, Gottesman S. Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol Microbiol 2008; 68:298–313 [View Article] [PubMed]
    [Google Scholar]
  95. Bougdour A, Wickner S, Gottesman S. Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev 2006; 20:884–897 [View Article] [PubMed]
    [Google Scholar]
  96. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 2014; 1151:165–188 [View Article] [PubMed]
    [Google Scholar]
  97. Lenski RE, Winkworth CL, Riley MA. Rates of DNA sequence evolution in experimental populations of Escherichia coli during 20,000 generations. J Mol Evol 2003; 56:498–508 [View Article] [PubMed]
    [Google Scholar]
  98. Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 2016; 536:165–170 [View Article] [PubMed]
    [Google Scholar]
  99. Maharjan RP, Ferenci T, Reeves PR, Li Y, Liu B et al. The multiplicity of divergence mechanisms in a single evolving population. Genome Biol 2012; 13:R41 [View Article] [PubMed]
    [Google Scholar]
  100. Österberg S, del Peso-Santos T, Shingler V. Regulation of alternative sigma factor use. Annu Rev Microbiol 2011; 65:37–55 [View Article] [PubMed]
    [Google Scholar]
  101. Pratt LA, Silhavy TJ. Crl stimulates RpoS activity during stationary phase. Mol Microbiol 1998; 29:1225–1236 [View Article] [PubMed]
    [Google Scholar]
  102. Typas A, Barembruch C, Possling A, Hengge R. Stationary phase reorganisation of the Escherichia coli transcription machinery by Crl protein, a fine-tuner of sigmas activity and levels. EMBO J 2007; 26:1569–1578 [View Article] [PubMed]
    [Google Scholar]
  103. Wassarman KM. 6S RNA: A regulator of transcription. Mol Microbiol 2007; 65:1425–1431 [View Article] [PubMed]
    [Google Scholar]
  104. Lal A, Krishna S, Seshasayee ASN. Regulation of Global Transcription in Escherichia coli by Rsd and 6S RNA. G3 (Bethesda) 2018; 8:2079–2089 [View Article] [PubMed]
    [Google Scholar]
  105. Mitchell JE, Oshima T, Piper SE, Webster CL, Westblade LF et al. The Escherichia coli regulator of sigma 70 protein, Rsd, can up-regulate some stress-dependent promoters by sequestering sigma 70. J Bacteriol 2007; 189:3489–3495 [View Article] [PubMed]
    [Google Scholar]
  106. Kram KE, Finkel SE. Rich Medium Composition Affects Escherichia coli Survival, Glycation, and Mutation Frequency during Long-Term Batch Culture. Appl Environ Microbiol 2015; 81:4442–4450 [View Article] [PubMed]
    [Google Scholar]
  107. Fukuda T, Nakahigashi K, Inokuchi H. Viability of Escherichia coli cells under long-term cultivation in a rich nutrient medium. Genes Genet Syst 2001; 76:271–278 [View Article] [PubMed]
    [Google Scholar]
  108. Kram KE, Finkel SE. Culture volume and vessel affect long-term survival, mutation frequency, and oxidative stress of Escherichia coli. Appl Environ Microbiol 2014; 80:1732–1738 [View Article] [PubMed]
    [Google Scholar]
  109. Hicks WM, Kotlajich MV, Visick JE. Recovery from long-term stationary phase and stress survival in Escherichia coli require the L-isoaspartyl protein carboxyl methyltransferase at alkaline pH. Microbiology (Reading) 2005; 151:2151–2158 [View Article] [PubMed]
    [Google Scholar]
  110. Tsou C-C, Chiang-Ni C, Lin Y-S, Chuang W-J, Lin M-T et al. An iron-binding protein, Dpr, decreases hydrogen peroxide stress and protects Streptococcus pyogenes against multiple stresses. Infect Immun 2008; 76:4038–4045 [View Article] [PubMed]
    [Google Scholar]
  111. LaCroix RA, Sandberg TE, O’Brien EJ, Utrilla J, Ebrahim A et al. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl Environ Microbiol 2015; 81:17–30 [View Article] [PubMed]
    [Google Scholar]
  112. Zambrano MM, Siegele DA, Almirón M, Tormo A, Kolter R. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 1993; 259:1757–1760 [View Article] [PubMed]
    [Google Scholar]
  113. Ali F, Seshasayee ASN. Dynamics of genetic variation in transcription factors and its implications for the evolution of regulatory networks in Bacteria. Nucleic Acids Res 2020; 48:4100–4114 [View Article] [PubMed]
    [Google Scholar]
  114. Cambon MC, Parthuisot N, Pagès S, Lanois A, Givaudan A et al. Selection of Bacterial Mutants in Late Infections: When Vector Transmission Trades Off against Growth Advantage in Stationary Phase. mBio 2019; 10:e01437-19 [View Article] [PubMed]
    [Google Scholar]
  115. Ivanova A, Renshaw M, Guntaka RV, Eisenstark A. DNA base sequence variability in katF (putative sigma factor) gene of Escherichia coli. Nucleic Acids Res 1992; 20:5479–5480 [View Article] [PubMed]
    [Google Scholar]
  116. Lee YH, Helmann JD. Mutations in the primary sigma factor σA and termination factor rho that reduce susceptibility to cell wall antibiotics. J Bacteriol 2014; 196:3700–3711 [View Article] [PubMed]
    [Google Scholar]
  117. Szalewska-Palasz A, Johansson LUM, Bernardo LMD, Skärfstad E, Stec E et al. Properties of RNA polymerase bypass mutants: implications for the role of ppGpp and its co-factor DksA in controlling transcription dependent on sigma54. J Biol Chem 2007; 282:18046–18056 [View Article] [PubMed]
    [Google Scholar]
  118. Finkel SE, Kolter R. Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci U S A 1999; 96:4023–4027 [View Article] [PubMed]
    [Google Scholar]
  119. Shoemaker WR, Jones SE, Muscarella ME, Behringer MG, Lehmkuhl BK et al. Microbial population dynamics and evolutionary outcomes under extreme energy limitation. Proc Natl Acad Sci U S A 2021; 118:e2101691118 [View Article] [PubMed]
    [Google Scholar]
  120. Singh R, Ray P, Das A, Sharma M. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 2009; 58:1067–1073 [View Article] [PubMed]
    [Google Scholar]
  121. Knöppel A, Näsvall J, Andersson DI. Evolution of Antibiotic Resistance without Antibiotic Exposure. Antimicrob Agents Chemother 2017; 61:e01495-17 [View Article] [PubMed]
    [Google Scholar]
  122. Kram KE, Henderson AL, Finkel SE. Escherichia coli Has a Unique Transcriptional Program in Long-Term Stationary Phase Allowing Identification of Genes Important for Survival. mSystems 2020; 5:e00364-20 [View Article] [PubMed]
    [Google Scholar]
  123. Robador A, Amend JP, Finkel SE. Nanocalorimetry Reveals the Growth Dynamics of Escherichia coli Cells Undergoing Adaptive Evolution during Long-Term Stationary Phase. Appl Environ Microbiol 2019; 85:e00968-19 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001195
Loading
/content/journal/micro/10.1099/mic.0.001195
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error