1887

Abstract

Uropathogenic (UPEC) cause millions of urinary tract infections each year in the United States. Type 1 pili are important for adherence of UPEC to uroepithelial cells in the human and murine urinary tracts where osmolality and pH vary. Previous work has shown that an acidic pH adversely affects the expression of type 1 pili. To determine if acid tolerance gene products may be regulating gene expression, a bank of K-12 strain acid tolerance gene mutants were screened using , and fusions on single copy number plasmids. We have determined that a mutation in increased transcription of all three genes, suggesting that GadE may be acting as a repressor in a low pH environment. Complementation of the mutation restored gene transcription to wild-type levels. Moreover, mutations in and also affected transcription of the three genes. To verify the role GadE plays in type 1 pilus expression, the NU149 UPEC strain was tested. The mutant had higher gene transcript levels, a higher frequency of Phase-OFF positioning of , and hemagglutination titres that were lower in strain NU149 cultured in low pH medium as compared to the wild-type bacteria. The data demonstrate that UPEC genes are regulated directly or indirectly by the GadE protein and this could have some future bearing on the ability to prevent urinary tract infections by acidifying the urine and shutting off gene expression.

Funding
This study was supported by the:
  • National Institutes of Health (Award AI065432)
    • Principle Award Recipient: WilliamR Schwan
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001149
2022-03-22
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/3/mic001149.html?itemId=/content/journal/micro/10.1099/mic.0.001149&mimeType=html&fmt=ahah

References

  1. Stamm WE, Norrby SR. Urinary tract infections: disease panorama and challenges. J Infect Dis 2001; 183 Suppl 1:S1–4 [View Article] [PubMed]
    [Google Scholar]
  2. Dielubanza EJ, Schaeffer AJ. Urinary tract infections in women. Med Clin North Am 2011; 95:27–41 [View Article] [PubMed]
    [Google Scholar]
  3. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol 2010; 7:653–660 [View Article] [PubMed]
    [Google Scholar]
  4. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 2014; 28:1–13 [View Article] [PubMed]
    [Google Scholar]
  5. Schappert SM, Rechsteiner EA. Ambulatory medical care utilization estimates for 2007. Vital Health Stat 2007; 13:1–38
    [Google Scholar]
  6. Keith BR, Maurer L, Spears PA, Orndorff PE. Receptor-binding function of type 1 pili effects bladder colonization by a clinical isolate of Escherichia coli. Infect Immun 1986; 53:693–696 [View Article] [PubMed]
    [Google Scholar]
  7. van der Bosch JF, Verboom-Sohmer U, Postma P, de Graaff J, MacLaren DM. Mannose-sensitive and mannose-resistant adherence to human uroepithelial cells and urinary virulence of Escherichia coli. Infect Immun 1980; 29:226–233 [View Article] [PubMed]
    [Google Scholar]
  8. Virkola R, Westerlund B, Holthöfer H, Parkkinen J, Kekomäki M et al. Binding characteristics of Escherichia coli adhesins in human urinary bladder. Infect Immun 1988; 56:2615–2622 [View Article] [PubMed]
    [Google Scholar]
  9. Kunin CM, Chambers ST. Osmoprotective properties for bacteria of renal papilla and urine: role of betaines as osmoprotectant molecules. In Kass E, Eden CS. eds Host–Parasite Interactions in Urinary Tract Infections Chicago: University of Chicago Press; 1989 pp 327–332
    [Google Scholar]
  10. Ross DL, Neely AE. Renal function. In Textbook of Urinalysis and Body Fluids Norwalk, VA: Appleton Century Crofts; 1983 pp 97–112
    [Google Scholar]
  11. Loeb WF, Quimby FW. The Clinical Chemistry of Laboratory Animals New York: Pergamon; 1989
    [Google Scholar]
  12. Foster JW. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2004; 2:898–907 [View Article] [PubMed]
    [Google Scholar]
  13. Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 1995; 177:4097–4104 [View Article]
    [Google Scholar]
  14. Lin J, Smith MP, Chapin KC, Baik HS, Bennett GN et al. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 1996; 62:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  15. Richard HT, Foster JW. Acid resistance in Escherichia coli. Adv Appl Microbiol 2003; 52:167–186 [View Article] [PubMed]
    [Google Scholar]
  16. Lund PA, De Biase D, Liran O, Scheler O, Mira NP et al. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Front Microbiol 2020; 11:556140 [View Article] [PubMed]
    [Google Scholar]
  17. Tucker DL, Tucker N, Conway T. Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 2002; 184:6551–6558 [View Article] [PubMed]
    [Google Scholar]
  18. Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K et al. Coordinated regulation of acid resistance in Escherichia coli. BMC Syst Biol 2017; 11:1 [View Article] [PubMed]
    [Google Scholar]
  19. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Control of acid resistance in Escherichia coli. J Bacteriol 1999; 181:3525–3535 [View Article] [PubMed]
    [Google Scholar]
  20. Hersh BM, Farooq FT, Barstad DN, Blankenhorn DL, Slonczewski JL. A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 1996; 178:3978–3981 [View Article] [PubMed]
    [Google Scholar]
  21. Smith DK, Kassam T, Singh B, Elliott JF. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 1992; 174:5820–5826 [View Article] [PubMed]
    [Google Scholar]
  22. Tramonti A, Visca P, De Canio M, Falconi M, De Biase D. Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 2002; 184:2603–2613 [View Article] [PubMed]
    [Google Scholar]
  23. Gong S, Richard H, Foster JW. YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 2003; 185:4402–4409 [View Article] [PubMed]
    [Google Scholar]
  24. Iyer R, Williams C, Miller C. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 2003; 185:6556–6561 [View Article] [PubMed]
    [Google Scholar]
  25. Pennacchietti E, D’Alonzo C, Freddi L, Occhialini A, De Biase D. The glutaminase-dependent acid resistance system: qualitative and quantitative assays and analysis of its distribution in enteric bacteria. Front Microbiol 2018; 9:2869 [View Article] [PubMed]
    [Google Scholar]
  26. Chen L, Zhao X, Wu J, Liu Q, Pang X et al. Metabolic characterisation of eight Escherichia coli strains including “Big Six” and acidic responses of selected strains revealed by NMR spectroscopy. Food Microbiol 2020; 88:103399 [View Article] [PubMed]
    [Google Scholar]
  27. De Biase D, Pennacchietti E. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol 2012; 86:770–786 [View Article] [PubMed]
    [Google Scholar]
  28. De Biase D, Tramonti A, John RA, Bossa F. Isolation, overexpression, and biochemical characterization of the two isoforms of glutamic acid decarboxylase from Escherichia coli. Protein Expr Purif 1996; 8:430–438 [View Article] [PubMed]
    [Google Scholar]
  29. Masuda N, Church GM. Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 2003; 48:699–712 [View Article] [PubMed]
    [Google Scholar]
  30. Hommais F, Krin E, Coppée J-Y, Lacroix C, Yeramian E et al. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology (Reading) 2004; 150:61–72 [View Article] [PubMed]
    [Google Scholar]
  31. Castanie-Cornet MP, Foster JW. Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology (Reading) 2001; 147:709–715 [View Article] [PubMed]
    [Google Scholar]
  32. Ma Z, Gong S, Richard H, Tucker DL, Conway T et al. GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 2003; 49:1309–1320 [View Article] [PubMed]
    [Google Scholar]
  33. Castanié-Cornet M-P, Treffandier H, Francez-Charlot A, Gutierrez C, Cam K. The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF. Microbiology (Reading) 2007; 153:238–246 [View Article] [PubMed]
    [Google Scholar]
  34. Castanié-Cornet M-P, Cam K, Bastiat B, Cros A, Bordes P et al. Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res 2010; 38:3546–3554 [View Article] [PubMed]
    [Google Scholar]
  35. Rentschler AE, Lovrich SD, Fitton R, Enos-Berlage J, Schwan WR. OmpR regulation of the uropathogenic Escherichia coli fimB gene in an acidic/high osmolality environment. Microbiology (Reading) 2013; 159:316–327 [View Article] [PubMed]
    [Google Scholar]
  36. Schwan WR, Lee JL, Lenard FA, Matthews BT, Beck MT. Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect Immun 2002; 70:1391–1402 [View Article] [PubMed]
    [Google Scholar]
  37. Hagberg L, Engberg I, Freter R, Lam J, Olling S et al. Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic Escherichia coli of human origin. Infect Immun 1983; 40:273–283 [View Article] [PubMed]
    [Google Scholar]
  38. Hultgren SJ, Porter TN, Schaeffer AJ, Duncan JL. Role of type 1 pili and effects of phase variation on lower urinary tract infections produced by Escherichia coli. Infect Immun 1985; 50:370–377 [View Article] [PubMed]
    [Google Scholar]
  39. Schaeffer AJ, Schwan WR, Hultgren SJ, Duncan JL. Relationship of type 1 pilus expression in Escherichia coli to ascending urinary tract infections in mice. Infect Immun 1987; 55:373–380 [View Article] [PubMed]
    [Google Scholar]
  40. Connell I, Agace W, Klemm P, Schembri M, Mărild S et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 1996; 93:9827–9832 [View Article] [PubMed]
    [Google Scholar]
  41. Schwan WR. Regulation of fim genes in uropathogenic Escherichia coli. World J Clin Infect Dis 2011; 1:17–25
    [Google Scholar]
  42. Orndorff PE, Falkow S. Nucleotide sequence of pilA, the gene encoding the structural component of type 1 pili in Escherichia coli. J Bacteriol 1985; 162:454–457 [View Article] [PubMed]
    [Google Scholar]
  43. Klemm P. The fimA gene encoding the type-1 fimbrial subunit of Escherichia coli. Nucleotide sequence and primary structure of the protein. Eur J Biochem 1984; 143:395–399 [View Article] [PubMed]
    [Google Scholar]
  44. Klemm P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 1986; 5:1389–1393 [View Article] [PubMed]
    [Google Scholar]
  45. McClain MS, Blomfield IC, Eisenstein BI. Roles of fimB and fimE in site-specific DNA inversion associated with phase variation of type 1 fimbriae in Escherichia coli. J Bacteriol 1991; 173:5308–5314 [View Article] [PubMed]
    [Google Scholar]
  46. McClain MS, Blomfield IC, Eberhardt KJ, Eisenstein BI. Inversion-independent phase variation of type 1 fimbriae in Escherichia coli. J Bacteriol 1993; 175:4335–4344 [View Article] [PubMed]
    [Google Scholar]
  47. Gally DL, Leathart J, Blomfield IC. Interaction of FimB and FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol Microbiol 1996; 21:725–738 [View Article] [PubMed]
    [Google Scholar]
  48. Holden N, Blomfield IC, Uhlin B-E, Totsika M, Kulasekara DH et al. Comparative analysis of FimB and FimE recombinase activity. Microbiology (Reading) 2007; 153:4138–4149 [View Article] [PubMed]
    [Google Scholar]
  49. Kulasekara HD, Blomfield IC. The molecular basis for the specificity of fimE in the phase variation of type 1 fimbriae of Escherichia coli K-12. Mol Microbiol 1999; 31:1171–1181 [View Article] [PubMed]
    [Google Scholar]
  50. Orndorff PE, Falkow S. Identification and characterization of a gene product that regulates type 1 piliation in Escherichia coli. J Bacteriol 1984; 160:61–66 [View Article] [PubMed]
    [Google Scholar]
  51. Pallesen L, Madsen O, Klemm P. Regulation of the phase switch controlling expression of type 1 fimbriae in Escherichia coli. Mol Microbiol 1989; 3:925–931 [View Article] [PubMed]
    [Google Scholar]
  52. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640–6645 [View Article] [PubMed]
    [Google Scholar]
  53. Schwan WR, Ding H. Temporal regulation of fim genes in uropathogenic Escherichia coli during infection of the murine urinary tract. J Pathog 2017; 2017:8694356
    [Google Scholar]
  54. Schwan WR, Seifert HS, Duncan JL. Growth conditions mediate differential transcription of fim genes involved in phase variation of type 1 pili. J Bacteriol 1992; 174:2367–2375 [View Article] [PubMed]
    [Google Scholar]
  55. Schwan WR, Shibata S, Aizawa S-I, Wolfe AJ. The two-component response regulator RcsB regulates type 1 piliation in Escherichia coli. J Bacteriol 2007; 189:7159–7163 [View Article] [PubMed]
    [Google Scholar]
  56. Teng C-H, Cai M, Shin S, Xie Y, Kim K-J et al. Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria bacteria in the fimbriated state. Infect Immun 2005; 73:2923–2931 [View Article] [PubMed]
    [Google Scholar]
  57. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402–408 [View Article] [PubMed]
    [Google Scholar]
  58. Hultgren SJ, Schwan WR, Schaeffer AJ, Duncan JL. Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun 1986; 54:613–620 [View Article] [PubMed]
    [Google Scholar]
  59. Stincone A, Daudi N, Rahman AS, Antczak P, Henderson I et al. A systems biology approach sheds new light on Escherichia coli acid resistance. Nucleic Acids Res 2011; 39:7512–7528 [View Article] [PubMed]
    [Google Scholar]
  60. Gottesman S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J Biol Chem 2019; 294:11685–11700 [View Article] [PubMed]
    [Google Scholar]
  61. Schwan WR, Flohr NL, Multerer AR, Starkey JC. GadE regulates flic gene transcription and motility in Escherichia coli. World J Clin Infect Dis 2020; 10:14–23 [View Article]
    [Google Scholar]
  62. Muller G. Type 1 fimbriae, a colonization factor of uropathogenic Escherichia coli, are controlled by the metabolic sensor CRP-cAMP. In The Fifth Workshop New York, New York, USA: 2009 [View Article]
    [Google Scholar]
  63. Eisenstein BI, Dodd DC. Pseudocatabolite repression of type 1 fimbriae of Escherichia coli. J Bacteriol 1982; 151:1560–1567 [View Article] [PubMed]
    [Google Scholar]
  64. Dove SL, Smith SG, Dorman CJ. Control of Escherichia coli type 1 fimbrial gene expression in stationary phase: a negative role for RpoS. Mol Gen Genet 1997; 254:13–20 [View Article] [PubMed]
    [Google Scholar]
  65. Ma Z, Richard H, Foster JW. pH-Dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 2003; 185:6852–6859 [View Article] [PubMed]
    [Google Scholar]
  66. Sayed AK, Foster JW. A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator. Mol Microbiol 2009; 71:1435–1450 [View Article] [PubMed]
    [Google Scholar]
  67. Ma Z, Richard H, Tucker DL, Conway T, Foster JW. Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 2002; 184:7001–7012 [View Article] [PubMed]
    [Google Scholar]
  68. Ma Z, Masuda N, Foster JW. Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol 2004; 186:7378–7389 [View Article] [PubMed]
    [Google Scholar]
  69. Ma X, Zhang S, Xu Z, Li H, Xiao Q et al. SdiA Improves the Acid Tolerance of E. coli by Regulating GadW and GadY Expression. Front Microbiol 2020; 11:1078 [View Article] [PubMed]
    [Google Scholar]
  70. Sayed AK, Odom C, Foster JW. The Escherichia coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. Microbiology (Reading) 2007; 153:2584–2592 [View Article] [PubMed]
    [Google Scholar]
  71. Tramonti A, De Canio M, Bossa F, De Biase D. Stability and oligomerization of recombinant GadX, a transcriptional activator of the Escherichia coli glutamate decarboxylase system. Biochim Biophys Acta 2003; 1647:376–380 [View Article]
    [Google Scholar]
  72. Tramonti A, De Canio M, Delany I, Scarlato V, De Biase D. Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli. J Bacteriol 2006; 188:8118–8127 [View Article] [PubMed]
    [Google Scholar]
  73. Tramonti A, De Canio M, De Biase D. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 2008; 70:965–982 [View Article] [PubMed]
    [Google Scholar]
  74. Tucker DL, Tucker N, Ma Z, Foster JW, Miranda RL et al. Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol 2003; 185:3190–3201 [View Article] [PubMed]
    [Google Scholar]
  75. Seo SW, Kim D, O’Brien EJ, Szubin R, Palsson BO. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli. Nat Commun 2015; 6:7970 [View Article] [PubMed]
    [Google Scholar]
  76. Valenski ML, Harris SL, Spears PA, Horton JR, Orndorff PE. The Product of the fimI gene is necessary for Escherichia coli type 1 pilus biosynthesis. J Bacteriol 2003; 185:5007–5011 [View Article] [PubMed]
    [Google Scholar]
  77. Braun H-S, Sponder G, Aschenbach JR, Kerner K, Bauerfeind R et al. The GadX regulon affects virulence gene expression and adhesion of porcine enteropathogenic Escherichia coli in vitro. Vet Anim Sci 2017; 3:10–17 [View Article] [PubMed]
    [Google Scholar]
  78. Branchu P, Matrat S, Vareille M, Garrivier A, Durand A et al. NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157:H7 LEE pathogenicity island in response to nitric oxide. PLoS Pathog 2014; 10:e1003874 [View Article] [PubMed]
    [Google Scholar]
  79. Shin S, Castanie-Cornet MP, Foster JW, Crawford JA, Brinkley C et al. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol Microbiol 2001; 41:1133–1150 [View Article] [PubMed]
    [Google Scholar]
  80. Morgan JK, Carroll RK, Harro CM, Vendura KW, Shaw LN et al. Global Regulator of Virulence A (GrvA) coordinates expression of discrete pathogenic mechanisms in enterohemorrhagic Escherichia coli through Interactions with GadW-GadE. J Bacteriol 2016; 198:394–409 [View Article] [PubMed]
    [Google Scholar]
  81. Chakraborty S, Kenney LJ. A New Role of OmpR in Acid and Osmotic Stress in Salmonella and E. coli. Front Microbiol 2018; 9:2656 [View Article]
    [Google Scholar]
  82. Johnson MD, Burton NA, Gutiérrez B, Painter K, Lund PA. RcsB is required for inducible acid resistance in Escherichia coli and acts at gadE-dependent and -independent promoters. J Bacteriol 2011; 193:3653–3656 [View Article] [PubMed]
    [Google Scholar]
  83. Pannen D, Fabisch M, Gausling L, Schnetz K. Interaction of the RcsB response regulator with auxiliary transcription regulators in Escherichia coli. J Biol Chem 2016; 291:2357–2370 [View Article] [PubMed]
    [Google Scholar]
  84. Szczesny M, Beloin C, Ghigo JM. Increased Osmolarity in Biofilm Triggers RcsB-Dependent Lipid A Palmitoylation in Escherichia coli. mBio 2018; 9:e01415-18 [View Article] [PubMed]
    [Google Scholar]
  85. Johnson LR. Essential Medical Physiology Philadelphia, PA: Lippincott- Raven; 1998
    [Google Scholar]
  86. Boudeau J, Barnich N, Darfeuille-Michaud A. Type 1 pili-mediated adherence of Escherichia coli strain LF82 isolated from Crohn’s disease is involved in bacterial invasion of intestinal epithelial cells. Mol Microbiol 2001; 39:1272–1284 [View Article] [PubMed]
    [Google Scholar]
  87. Schaeffer AJ, Jones JM, Dunn JK. Association of in vitro Escherichia coli adherence to vaginal and buccal epithelial cells with susceptibility of women to recurrent urinary-tract infections. N Engl J Med 1981; 304:1062–1066 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001149
Loading
/content/journal/micro/10.1099/mic.0.001149
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error