1887

Abstract

O1 and O139 isolates deploy cholera toxin (CT) and toxin-coregulated pilus (TCP) to cause the diarrhoeal disease cholera. The and genes encoding CT and TCP are part of two acquired genetic elements, the CTX phage and pathogenicity island-1 (VPI-1), respectively. ToxR and ToxT proteins are the key regulators of virulence genes of O1 and O139. isolates belonging to serogroups other than O1/O139, called non-O1/non-O139, are usually devoid of virulence-related elements and are non-pathogenic. Here, we have analysed the available whole genome sequence of an environmental toxigenic non-O1/non-O139 strain, VCE232, carrying the CTX phage and VPI-1. Extensive bioinformatics and phylogenetic analyses indicated high similarity of the VCE232 genome sequence with the genome of O1 strains, including organization of the VPI-1 locus, and genes, and promoters. We established that the VCE232 strain produces an optimal amount of CT at 30 °C under AKI conditions. To investigate the role of ToxT and ToxR in the regulation of virulence factors, we constructed Δ, Δ and ΔΔ deletion mutants of VCE232. Extensive genetic analyses of these mutants indicated that the and genes of VCE232 are crucial for CT and TCP production. However, unlike O1 isolates, the presence of either or gene is sufficient for optimal CT production in VCE232. In addition, the VCE232 Δ mutant showed differential regulation of the major outer membrane proteins, OmpT and OmpU. This is the first attempt to explore the regulation of expression of major virulence genes and regulators in an environmental toxigenic non-O1/non-O139 strain.

Funding
This study was supported by the:
  • CSIR – Indian Institute of Chemical Biology (Award MLP118)
    • Principle Award Recipient: RupakK. Bhadra
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001135
2022-02-03
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/2/mic001135.html?itemId=/content/journal/micro/10.1099/mic.0.001135&mimeType=html&fmt=ahah

References

  1. Shimada T, Arakawa E, Itoh K, Okitsu T, Matsushima A et al. Extended serotyping scheme forVibrio cholerae. Curr Microbiol 1994; 28:175–178 [View Article]
    [Google Scholar]
  2. Kaper J, Morris J, Levine M. Cholera. Clin Microbiol Rev 1995; 8:48–86 [View Article]
    [Google Scholar]
  3. Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet 2004; 363:223–233 [View Article]
    [Google Scholar]
  4. Dalsgaard A, Forslund A, Hesselbjerg A, Bruun B. Clinical manifestations and characterization of extra-intestinal Vibrio cholerae non-O1, non-O139 infections in Denmark. Clin Microbiol Infect 2000; 6:625–627 [View Article]
    [Google Scholar]
  5. Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 1987; 84:2833–2837 [View Article] [PubMed]
    [Google Scholar]
  6. Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 1998; 62:1301–1314 [View Article] [PubMed]
    [Google Scholar]
  7. Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK et al. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 1988; 168:1487–1492 [View Article] [PubMed]
    [Google Scholar]
  8. Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1996; 272:1910–1914 [View Article] [PubMed]
    [Google Scholar]
  9. Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB et al. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 1998; 95:3134–3139 [View Article] [PubMed]
    [Google Scholar]
  10. Olsvik O, Wahlberg J, Petterson B, Uhlén M, Popovic T et al. Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol 1993; 31:22–25 [View Article] [PubMed]
    [Google Scholar]
  11. Bhuiyan NA, Nusrin S, Alam M, Morita M, Watanabe H et al. Changing genotypes of cholera toxin (CT) of Vibrio cholerae O139 in Bangladesh and description of three new CT genotypes. FEMS Immunol Med Microbiol 2009; 57:136–141 [View Article] [PubMed]
    [Google Scholar]
  12. Neogi SB, Chowdhury N, Awasthi SP, Asakura M, Okuno K et al. Novel Cholera Toxin Variant and ToxT Regulon in Environmental Vibrio mimicus Isolates: Potential Resources for the Evolution of Vibrio cholerae Hybrid Strains. Appl Environ Microbiol 2019; 85:e01977-18 [View Article] [PubMed]
    [Google Scholar]
  13. Faruque SM, Tam VC, Chowdhury N, Diraphat P, Dziejman M et al. Genomic analysis of the Mozambique strain of Vibrio cholerae O1 reveals the origin of El Tor strains carrying classical CTX prophage. Proc Natl Acad Sci U S A 2007; 104:5151–5156 [View Article] [PubMed]
    [Google Scholar]
  14. Das B, Halder K, Pal P, Bhadra RK. Small chromosomal integration site of classical CTX prophage in Mozambique Vibrio cholerae O1 biotype El Tor strain. Arch Microbiol 2007; 188:677–683 [View Article] [PubMed]
    [Google Scholar]
  15. Safa A, Nair GB, Kong RYC. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 2010; 18:46–54 [View Article] [PubMed]
    [Google Scholar]
  16. Maiti D, Das B, Saha A, Nandy RK, Nair GB et al. Genetic organization of pre-CTX and CTX prophages in the genome of an environmental Vibrio cholerae non-O1, non-O139 strain. Microbiology (Reading) 2006; 152:3633–3641 [View Article] [PubMed]
    [Google Scholar]
  17. Gong L, Yu P, Zheng H, Gu W, He W et al. Comparative genomics for non-O1/O139 Vibrio cholerae isolates recovered from the Yangtze River Estuary versus V. cholerae representative isolates from serogroup O1. Mol Genet Genomics 2019; 294:417–430 [View Article] [PubMed]
    [Google Scholar]
  18. Sarkar A, Nandy RK, Nair GB, Ghose AC. Vibrio pathogenicity island and cholera toxin genetic element-associated virulence genes and their expression in non-O1 non-O139 strains of Vibrio cholerae. Infect Immun 2002; 70:4735–4742 [View Article] [PubMed]
    [Google Scholar]
  19. Chakraborty S, Mukhopadhyay AK, Bhadra RK, Ghosh AN, Mitra R et al. Virulence genes in environmental strains of Vibrio cholerae. Appl Environ Microbiol 2000; 66:4022–4028 [View Article] [PubMed]
    [Google Scholar]
  20. Schwartz K, Hammerl JA, Göllner C, Strauch E. Environmental and clinical strains of Vibrio cholerae Non-O1, Non-O139 From Germany possess similar virulence gene profiles. Front Microbiol 2019; 10:733 [View Article] [PubMed]
    [Google Scholar]
  21. Deshayes S, Daurel C, Cattoir V, Parienti J-J, Quilici M-L et al. Non-O1, non-O139 Vibrio cholerae bacteraemia: case report and literature review. Springerplus 2015; 4:575 [View Article] [PubMed]
    [Google Scholar]
  22. Mukherjee M, Kakarla P, Kumar S, Gonzalez E, Floyd JT et al. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae. Genom Discov 2014; 2:1–15 [View Article] [PubMed]
    [Google Scholar]
  23. Verma J, Bag S, Saha B, Kumar P, Ghosh TS et al. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc Natl Acad Sci USA 2019; 116:6226–6231 [View Article] [PubMed]
    [Google Scholar]
  24. Li M, Shimada T, Morris JG Jr, Sulakvelidze A, Sozhamannan S. Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect Immun 2002; 70:2441–2453 [View Article] [PubMed]
    [Google Scholar]
  25. Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ et al. Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol 2008; 27:347–355 [View Article] [PubMed]
    [Google Scholar]
  26. Shapiro B, Levade I, Kovacikova G, Taylor R, Almagro-Moreno S. Origins of pandemic vibrio cholerae from environmental gene pools. Nat Microbiol 2016; 2:1–6
    [Google Scholar]
  27. Kimsey HH, Nair GB, Ghosh A, Waldor MK. Diverse CTXphis and evolution of new pathogenic Vibrio cholerae. Lancet 1998; 352:457–458 [View Article] [PubMed]
    [Google Scholar]
  28. Bhadra RK, Roychoudhury S, Banerjee RK, Kar S, Majumdar R et al. Cholera toxin (CTX) genetic element in Vibrio cholerae O139. Microbiology (Reading) 1995; 141 (Pt 8):1977–1983 [View Article] [PubMed]
    [Google Scholar]
  29. Ramamurthy T, Mutreja A, Weill F-X, Das B, Ghosh A et al. Revisiting the Global Epidemiology of Cholera in Conjuction With the Genomics of Vibrio cholerae. Front Public Health 2019;7:203. 10.3389/fpubh.2019.00203. [PubMed]
  30. Bhattacharya T, Chatterjee S, Maiti D, Bhadra RK, Takeda Y et al. Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1, non-O139 strains. Environ Microbiol 2006; 8:526–634 [View Article] [PubMed]
    [Google Scholar]
  31. Skorupski K, Taylor RK. Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol Microbiol 1997; 25:1003–1009 [View Article] [PubMed]
    [Google Scholar]
  32. Peterson KM, Gellings PS. Multiple intraintestinal signals coordinate the regulation of Vibrio cholerae virulence determinants. Pathog Dis 2018; 76: [View Article] [PubMed]
    [Google Scholar]
  33. Haralalka S, Nandi S, Bhadra RK. Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. J Bacteriol 2003; 185:4672–4682 [View Article] [PubMed]
    [Google Scholar]
  34. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. Current protocol in Molecular Biology New York, USA: John Wiley and Sons; 1989
    [Google Scholar]
  35. Das B, Bhadra RK. Molecular characterization of vibrio cholerae DeltarelA DeltaspoT double mutants. Arch Microbiol 2008; 189:227–238 [View Article] [PubMed]
    [Google Scholar]
  36. Miller VL, Mekalanos JJ. Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc Natl Acad Sci U S A 1984; 81:3471–3475 [View Article] [PubMed]
    [Google Scholar]
  37. Iwanaga M, Kuyyakanond T. Large production of cholera toxin by Vibrio cholerae O1 in yeast extract peptone water. J Clin Microbiol 1987; 25:2314–2316 [View Article] [PubMed]
    [Google Scholar]
  38. Basu P, Bhadra RK. Post-transcriptional regulation of cholera toxin production in Vibrio cholerae by the stringent response regulator DksA. Microbiology (Reading) 2019; 165:102–112 [View Article] [PubMed]
    [Google Scholar]
  39. Pal RR, Bag S, Dasgupta S, Das B, Bhadra RK. Functional characterization of the stringent response regulatory gene dksA of Vibrio cholerae and its role in modulation of virulence phenotypes. J Bacteriol 2012; 194:5638–5648 [View Article] [PubMed]
    [Google Scholar]
  40. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  41. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  42. Haley BJ, Grim CJ, Hasan NA, Taviani E, Chun J et al. The pre-seventh pandemic Vibrio cholerae BX 330286 El Tor genome: evidence for the environment as a genome reservoir. Environ Microbiol Rep 2010; 2:208–216 [View Article] [PubMed]
    [Google Scholar]
  43. Huber KE, Waldor MK. Filamentous phage integration requires the host recombinases XerC and XerD. Nature 2002; 417:656–659 [View Article] [PubMed]
    [Google Scholar]
  44. Halder K, Das B, Nair GB, Bhadra RK. Molecular evidence favouring step-wise evolution of Mozambique Vibrio cholerae O1 El Tor hybrid strain. Microbiology (Reading) 2010; 156:99–107 [View Article] [PubMed]
    [Google Scholar]
  45. Miller VL, Taylor RK, Mekalanos JJ. Cholera toxin transcriptional activator toxR is a transmembrane DNA binding protein. Cell 1987; 48:271–279 [View Article] [PubMed]
    [Google Scholar]
  46. Häse CC, Mekalanos JJ. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 1998; 95:730–734 [View Article] [PubMed]
    [Google Scholar]
  47. Goss TJ, Seaborn CP, Gray MD, Krukonis ES. Identification of the TcpP-binding site in the toxT promoter of Vibrio cholerae and the role of ToxR in TcpP-mediated activation. Infect Immun 2010; 78:4122–4133 [View Article] [PubMed]
    [Google Scholar]
  48. Krukonis ES, DiRita VJ. DNA binding and ToxR responsiveness by the wing domain of TcpP, an activator of virulence gene expression in Vibrio cholerae. Mol Cell 2003; 12:157–165 [View Article] [PubMed]
    [Google Scholar]
  49. Goss TJ, Morgan SJ, French EL, Krukonis ES. ToxR recognizes a direct repeat element in the toxT, ompU, ompT, and ctxA promoters of Vibrio cholerae to regulate transcription. Infect Immun 2013; 81:884–895 [View Article] [PubMed]
    [Google Scholar]
  50. Prouty MG, Osorio CR, Klose KE. Characterization of functional domains of the Vibrio cholerae virulence regulator ToxT. Mol Microbiol 2005; 58:1143–1156 [View Article] [PubMed]
    [Google Scholar]
  51. Shakhnovich EA, Hung DT, Pierson E, Lee K, Mekalanos JJ. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc Natl Acad Sci U S A 2007; 104:2372–2377 [View Article] [PubMed]
    [Google Scholar]
  52. Kovacikova G, Skorupski K. Differential activation of the tcpPH promoter by AphB determines biotype specificity of virulence gene expression in Vibrio cholerae. J Bacteriol 2000; 182:3228–3238 [View Article]
    [Google Scholar]
  53. Withey J, DiRita V. The toxbox: specific DNA sequence requirements for activation of Vibrio cholerae virulence genes by ToxT. Mol Microbiol 2006; 59:1779–1789
    [Google Scholar]
  54. Miller VL, Mekalanos JJ. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988; 170:2575–2583 [View Article] [PubMed]
    [Google Scholar]
  55. Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 2009; 106:15442–15447 [View Article] [PubMed]
    [Google Scholar]
  56. Siriphap A, Leekitcharoenphon P, Kaas RS, Theethakaew C, Aarestrup FM et al. Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand. PLoS One 2017; 12:e0169324 [View Article] [PubMed]
    [Google Scholar]
  57. Li M, Shimada T, Morris JG, Sulakvelidze A, Sozhamannan S. Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect Immun 2002; 70:2441–2453 [View Article] [PubMed]
    [Google Scholar]
  58. Blokesch M, Schoolnik GK. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog 2007; 3:e81 [View Article] [PubMed]
    [Google Scholar]
  59. Mukhopadhyay AK, Chakraborty S, Takeda Y, Nair GB, Berg DE. Characterization of VPI pathogenicity island and CTXphi prophage in environmental strains of Vibrio cholerae. J Bacteriol 2001; 183:4737–4746 [View Article] [PubMed]
    [Google Scholar]
  60. Waldor MK, Mekalanos JJ. ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immun 1994; 62:72–78 [View Article] [PubMed]
    [Google Scholar]
  61. Welch TJ, Bartlett DH. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol Microbiol 1998; 27:977–985 [View Article] [PubMed]
    [Google Scholar]
  62. Haley BJ, Choi SY, Grim CJ, Onifade TJ, Cinar HN et al. Genomic and phenotypic characterization of Vibrio cholerae non-O1 isolates from a US Gulf Coast cholera outbreak. PLoS One 2014; 9:e86264 [View Article] [PubMed]
    [Google Scholar]
  63. Marin MA, Vicente ACP. Variants of Vibrio cholerae O1 El Tor from Zambia showed new genotypes of ctxB. Epidemiol Infect 2012; 140:1386–1387 [View Article] [PubMed]
    [Google Scholar]
  64. Thompson CC, Vicente ACP, Souza RC, Vasconcelos ATR, Vesth T et al. Genomic taxonomy of Vibrios. BMC Evol Biol 2009; 9:258 [View Article] [PubMed]
    [Google Scholar]
  65. Zhang P, Zhou H, Kan B, Wang D. Novel ctxB variants of Vibrio cholerae O1 isolates, China. Infect Genet Evol 2013; 20:48–53 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001135
Loading
/content/journal/micro/10.1099/mic.0.001135
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error