1887

Abstract

The crisis of antimicrobial resistant bacterial infections is one of the most pressing public health issues. Common agricultural practices have been implicated in the generation of antimicrobial resistant bacteria. Biopesticides, live bacteria used for pest control, are non-pathogenic and considered safe for consumption. Application of bacteria-based pesticides to crops in high concentrations raises the possibility of unintentional contributions to the movement and generation of antimicrobial resistance genes in the environment. However, the presence of clinically relevant antimicrobial resistance genes and their resistance phenotypes are currently unknown. Here we use a combination of multiple bioinformatic and microbiological techniques to define resistomes of widely used biopesticides and determine how the presence of suspected antimicrobial resistance genes translates to observable resistance phenotypes in several biopesticide products. Our results demonstrate that biopesticide products are reservoirs of clinically relevant antimicrobial resistance genes and bear resistance to multiple drug classes.

Funding
This study was supported by the:
  • University of California Merced
    • Principle Award Recipient: KazeMo
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001074
2021-08-05
2024-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/8/mic001074.html?itemId=/content/journal/micro/10.1099/mic.0.001074&mimeType=html&fmt=ahah

References

  1. Center for Disease Control Antibiotic Resistance Threats in the United States 2019 Atlanta, GA, USA: US Health and Human Services; 2019
    [Google Scholar]
  2. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11:1645 [View Article] [PubMed]
    [Google Scholar]
  3. Schwarz S, Fessler AT, Loncaric I, Wu C, Kadlec K et al. Antimicrobial resistance among Staphylococci of animal origin. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals 2018 pp 127–157
    [Google Scholar]
  4. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol 2014; 22:536–545 [View Article] [PubMed]
    [Google Scholar]
  5. Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L et al. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol 2018; 3:898–908 [View Article] [PubMed]
    [Google Scholar]
  6. Khachatourians GG. Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Cmaj 1998; 159:1129–1136 [PubMed]
    [Google Scholar]
  7. Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol 2019; 4:1432–1442 [View Article] [PubMed]
    [Google Scholar]
  8. Food and Drug Administration Antimicrobials Sold or Distributed for Use in Food-Producing Animals Silver Spring, MD, USA: US Food and Drug Administration; 2015
    [Google Scholar]
  9. Anderson JA, Staley J, Challender M, Heuton J. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Res 2018; 27:103–113 [View Article] [PubMed]
    [Google Scholar]
  10. Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y et al. From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 2016; 7:1110 [View Article] [PubMed]
    [Google Scholar]
  11. EFSA Panel on Biological Hazards (BIOHAZ) Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA Journal 2016; 14:e04524
    [Google Scholar]
  12. Roh JY, Choi JY, Li MS, Jin BR, Je YH. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 2007; 17:547–559 [PubMed]
    [Google Scholar]
  13. Federici BA, Siegel JP. Safety assessment of Bacillus thuringiensis and Bt crops used in insect control. Food Sci Technol 2008; 172:45
    [Google Scholar]
  14. Siegel JP. The mammalian safety of Bacillus thuringiensis-based insecticides. J Invertebr Pathol 2001; 77:13–21 [View Article] [PubMed]
    [Google Scholar]
  15. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 2016; 4:148 [View Article] [PubMed]
    [Google Scholar]
  16. Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R et al. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 2013; 307:136–145 [View Article] [PubMed]
    [Google Scholar]
  17. Food and Drug Administration Substances Generally Recognized as Safe Silver Spring, MD, USA: US Food and Drug Administration; 2016
    [Google Scholar]
  18. Van den Berg H. Global status of DDT and its alternatives for use in vector control to prevent disease. Environ Health Perspect 2009; 117:1656–1663 [View Article] [PubMed]
    [Google Scholar]
  19. Smitley DR, Davis TW. Aerial application of Bacillus thuringiensis for suppression of gypsy moth (Lepidoptera: Lymantriidae) in Populus-Quercus forests. J Econ Entomol 1993; 86:1178–1184 [View Article]
    [Google Scholar]
  20. Bravo A, Likitvivatanavong S, Gill SS, Soberón M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 2011; 41:423–431 [View Article] [PubMed]
    [Google Scholar]
  21. Höfte H, Whiteley HR. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Mol Biol Rev 1989; 53:242–255
    [Google Scholar]
  22. Reyes-Ramírez A, Ibarra JE. Plasmid patterns of Bacillus thuringiensis type strains. Appl Environ Microbiol 2008; 74:125–129 [View Article] [PubMed]
    [Google Scholar]
  23. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2016; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  24. California Department of Pesticide Regulation Summary of Pesticide Use Report Data-2019 2018
    [Google Scholar]
  25. NCBI National Center for Biotechnology Information (NCBI) Bethesda (MD: National Library of Medicine (US), National Center for Biotechnology Information; 2019
    [Google Scholar]
  26. Hudzicki J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol 2009
    [Google Scholar]
  27. Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T et al. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol 2018; 56: [View Article] [PubMed]
    [Google Scholar]
  28. EUCAST The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of mics and zone diameters, version 10.0; 2020
  29. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data 2010
    [Google Scholar]
  30. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  32. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  33. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC genomics 2008; 9:1–15
    [Google Scholar]
  34. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2004; 32:D119–D115 [View Article]
    [Google Scholar]
  35. Allaire J. RStudio: Integrated Development Environment For R Boston, MA: 2012 p 394
    [Google Scholar]
  36. World Health Organization Critically important antimicrobials for human medicine: ranking of antimicrobial agents for risk management of antimicrobial resistance due to non-human use; 2017
  37. Smith JR, Rybak JM, Claeys KC. Imipenem‐cilastatin‐relebactam: A novel β‐lactam–β‐lactamase inhibitor combination for the treatment of multidrug‐resistant gram‐negative infections. Pharmacotherapy 2020; 40:343–356 [View Article]
    [Google Scholar]
  38. Courvalin P. Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 1994; 38:1447–1451 [View Article]
    [Google Scholar]
  39. Meric G, Mageiros L, Pascoe B, Woodcock DJ, Mourkas E et al. Lineage‐specific plasmid acquisition and the evolution of specialized pathogens in Bacillus thuringiensis and the Bacillus cereus group. Mol Ecol 2018; 27:1524–1540
    [Google Scholar]
  40. Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N. Bacillus thuringiensis: an impotent pathogen?. Trends Microbiol 2010; 18:189–194 [View Article] [PubMed]
    [Google Scholar]
  41. Belbahri L, Chenari Bouket A, Rekik I, Alenezi FN, Vallat A et al. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Front Microbiol 2017; 8:1438 [View Article] [PubMed]
    [Google Scholar]
  42. Patel R, Piper K, Cockerill FR, Steckelberg JM, Yousten AA. The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob Agents Chemother (Bethesda) 2000; 44:705–709
    [Google Scholar]
  43. Coenye T, Mahenthiralingam E, Henry D, LiPuma JJ, Laevens S et al. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 2001; 51:1481–1490 [View Article] [PubMed]
    [Google Scholar]
  44. Guglierame P, Pasca MR, De Rossi E, Buroni S, Arrigo P et al. Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome. BMC Microbiol 2006; 6:1–14
    [Google Scholar]
  45. Mühlberg E, Umstätter F, Kleist C, Domhan C, Mier W et al. Renaissance of vancomycin: Approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Can J Microbiol 2020; 66:11–16 [View Article] [PubMed]
    [Google Scholar]
  46. Luna VA, King DS, Gulledge J, Cannons AC, Amuso PT et al. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre automated microbroth dilution and Etest agar gradient diffusion methods. J Antimicrob Chemother 2007; 60:555–567 [View Article]
    [Google Scholar]
  47. Turnbull PC, Sirianni NM, LeBron CI, Samaan MN, Sutton FN et al. MICs of selected antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a range of clinical and environmental sources as determined by the Etest. J Clin Microbiol 2004; 42:3626–3634 [View Article] [PubMed]
    [Google Scholar]
  48. Fenselau C, Havey C, Teerakulkittipong N, Swatkoski S, Laine O et al. Identification of β-Lactamase in Antibiotic-resistant Bacillus cereus spores. Appl Environ Microbiol 2008; 74:904–906 [View Article] [PubMed]
    [Google Scholar]
  49. Raymond B, Federici BA. In defence of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity—a response to EFSA. FEMS Microbiol Ecol 2017; 93:fix084 [View Article] [PubMed]
    [Google Scholar]
  50. Zhang L, Li XZ, Poole K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001; 45:3497–3503 [View Article]
    [Google Scholar]
  51. Mima T, Kohira N, Li Y, Sekiya H, Ogawa W et al. Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND components in Pseudomonas aeruginosa. Microbiology (Reading) 2009; 155:3509–3517 [View Article] [PubMed]
    [Google Scholar]
  52. Sharff A, Fanutti C, Shi J, Calladine C, Luisi B. The role of the TolC family in protein transport and multidrug efflux. From stereochemical certainty to mechanistic hypothesis. Eur J Biochem 2001; 268:5011–5026 [View Article] [PubMed]
    [Google Scholar]
  53. Brooks LE, Kaze M, Sistrom M. Where the plasmids roam: large-scale sequence analysis reveals plasmids with large host ranges. Microb Genom 2019; 5: [View Article] [PubMed]
    [Google Scholar]
  54. Vester B. The cfr and cfr-like multiple resistance genes. Res Microbiol 2018; 169:61–66 [View Article] [PubMed]
    [Google Scholar]
  55. Chen YT, Liao TL, Liu YM, Lauderdale TL, Yan JJ et al. Mobilization of qnrB2 and ISCR1 in plasmids. Antimicrob Agents Chemother 2009; 53:1235–1237 [View Article]
    [Google Scholar]
  56. Boehme S, Werner G, Klare I, Reissbrodt R, Witte W. Occurrence of antibiotic-resistant enterobacteria in agricultural foodstuffs. Mol Nutr Food Res 2004; 48:522–531 [View Article]
    [Google Scholar]
  57. Iyer R, Moussa SH, Tommasi R, Miller AA. Role of the Klebsiella pneumoniae TolC porin in antibiotic efflux. Res Microbiol 2019; 170:112–116 [View Article] [PubMed]
    [Google Scholar]
  58. Nishino K, Yamada J, Hirakawa H, Hirata T, Yamaguchi A. Roles of TolC-dependent multidrug transporters of Escherichia coli in resistance to β-lactams. Antimicrob Agents Chemother 2003; 47:3030–3033 [View Article] [PubMed]
    [Google Scholar]
  59. Brooks L, Kaze M, Sistrom M. A curated, comprehensive database of plasmid sequences. Microbiol Resour Announc 2019; 8: [View Article] [PubMed]
    [Google Scholar]
  60. Sanchis V, Agaisse H, Chaufaux J, Lereclus D. A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microbiol 1997; 63:779–784 [View Article] [PubMed]
    [Google Scholar]
  61. López-Cabrera M, Pérez-González JA, Heinzel P, Piepersberg W, Jiménez A. Isolation and nucleotide sequencing of an aminocyclitol acetyltransferase gene from Streptomyces rimosus forma paromomycinus. J Bacteriol 1989; 171:321–328 [View Article] [PubMed]
    [Google Scholar]
  62. Qiu J, Zhuo Y, Zhu D, Zhou X, Zhang L et al. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 2011; 92:337–345 [View Article] [PubMed]
    [Google Scholar]
  63. Mikolosko J, Bobyk K, Zgurskaya HI, Ghosh P. Conformational flexibility in the multidrug efflux system protein AcrA. Structure 2006; 14:577–587 [View Article] [PubMed]
    [Google Scholar]
  64. Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 2004; 10:12–26 [View Article] [PubMed]
    [Google Scholar]
  65. Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J Bacteriol 2002; 184:6490–6498 [View Article] [PubMed]
    [Google Scholar]
  66. Lau SY, Zgurskaya HI. Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. J Bacteriol 2005; 187:7815–7825 [View Article] [PubMed]
    [Google Scholar]
  67. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22:582–610 [View Article] [PubMed]
    [Google Scholar]
  68. Jassem AN, Forbes CM, Speert DP. Investigation of aminoglycoside resistance inducing conditions and a putative AmrAB-OprM efflux system in Burkholderia vietnamiensis. Ann Clin Microbiol Antimicrob 2014; 13:1–5 [View Article]
    [Google Scholar]
  69. Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun 2000; 68:6139–6146 [View Article] [PubMed]
    [Google Scholar]
  70. Bernard R, Guiseppi A, Chippaux M, Foglino M, Denizot F. Resistance to bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the control of expression of its own structural genes. J Bacteriol 2007; 189:8636–8642 [View Article] [PubMed]
    [Google Scholar]
  71. Carfi A, Duée E, Paul-Soto R, Galleni M, Frère J-M et al. X-ray structure of the ZnII β-lactamase from Bacteroides fragilis in an orthorhombic crystal form. Acta Crystallogr D Biol Crystallogr 1998; 54:47–57 [View Article]
    [Google Scholar]
  72. Kumar S, Varela MF. Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 2012; 13:4484–4495 [View Article] [PubMed]
    [Google Scholar]
  73. Joon S, Bhatnagar S, Bhatnagar R. Transcriptional regulators in Bacillus anthracis: A potent biothreat agent. In Recent Developments in Microbial Technologies Singapore: Springer; 2021 pp 367–377
    [Google Scholar]
  74. Kim SK, Demuth M, Schlesinger SR, Kim SJ, Urbanczyk J et al. Inhibition of Bacillus anthracis metallo-β-lactamase by compounds with hydroxamic acid functionality. J Enzyme Inhib Med Chem 2016; 31:132–137 [View Article] [PubMed]
    [Google Scholar]
  75. Klyachko KA, Schuldiner S, Neyfakh AA. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr. J Bacteriol 1997; 179:2189–2193 [View Article] [PubMed]
    [Google Scholar]
  76. Elisha BG, Steyn LM. Identification of an Acinetobacter baumannii gene region with sequence and organizational similarity to Tn2670. Plasmid 1991; 25:96–104 [View Article] [PubMed]
    [Google Scholar]
  77. Deshpande LM, Ashcraft DS, Kahn HP, Pankey G, Jones RN et al. Detection of a new cfr-like gene, cfr (B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 2015; 59:6256–6261 [View Article]
    [Google Scholar]
  78. Hansen LH, Planellas MH, Long KS, Vester B. The order Bacillales hosts functional homologs of the worrisome cfr antibiotic resistance gene. Antimicrob Agents Chemother 2012; 56:3563–3567 [View Article]
    [Google Scholar]
  79. Hansen LH, Vester B. A cfr-like gene from Clostridium difficile confers multiple antibiotic resistance by the same mechanism as the cfr gene. Antimicrob Agents Chemother 2015; 59:5841–5843 [View Article]
    [Google Scholar]
  80. Yao H, Shen Z, Wang Y, Deng F, Liu D et al. Emergence of a potent multidrug efflux pump variant that enhances Campylobacter resistance to multiple antibiotics. MBio 2016; 7:e01543
    [Google Scholar]
  81. Dittrich W, Betzler M, Schrempf H. An amplifiable and deletable chloramphenicol‐resistance determinant of Streptomyces lividans 1326 encodes a putative transmembrane protein. Mol Microbiol 1991; 5:2789–2797 [View Article] [PubMed]
    [Google Scholar]
  82. Srinivasan VB, Venkataramaiah M, Mondal A, Vaidyanathan V, Govil T. Functional characterization of a novel outer membrane porin KPNO; 2012
  83. Nishino K, Senda Y, Yamaguchi A. CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes. J Antibiot (Tokyo) 2008; 61:120–127 [View Article] [PubMed]
    [Google Scholar]
  84. Lomovskaya O, Lewis KIM. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A 1992; 89:8938–8942 [View Article]
    [Google Scholar]
  85. Malhotra-Kumar S, Mazzariol A, Van Heirstraeten L, Lammens C, De Rijk P et al. Unusual resistance patterns in macrolide-resistant Streptococcus pyogenes harbouring erm (A. J Antimicrob chem 2009; 63:42–46 [View Article]
    [Google Scholar]
  86. Min YH, Kwon AR, Yoon EJ, Shim MJ, Choi EC. Translational attenuation and mRNA stabilization as mechanisms of erm (B) induction by erythromycin. Antimicrob Agents Chemother (Bethesda) 2008; 52:1782–1789
    [Google Scholar]
  87. Beharry Z, Palzkill T. Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa. J Biol Chem 2005; 280:17786–17791 [View Article]
    [Google Scholar]
  88. Ma Y, Xu X, Guo Q, Wang W, Wang W et al. Characterization of fosA5, a new plasmid‐mediated fosfomycin resistance gene in Escherichia coli. Lett Appl Microbiol 2015; 60:259–264 [View Article] [PubMed]
    [Google Scholar]
  89. Guo Q, Tomich AD, McElheny CL, Cooper VS, Stoesser N et al. Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli. J Antimicrob Chemother 2016; 71:2460–2465 [View Article]
    [Google Scholar]
  90. Thompson MK, Keithly ME, Goodman MC, Hammer ND, Cook PD et al. Structure and function of the genomically encoded fosfomycin resistance enzyme, FosB, from Staphylococcus aureus. Biochemistry 2014; 53:755–765 [View Article] [PubMed]
    [Google Scholar]
  91. Nishino K, Yamaguchi A. Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. J Bacteriol 2004; 186:1423–1429 [View Article] [PubMed]
    [Google Scholar]
  92. Godreuil S, Galimand M, Gerbaud G, Jacquet C, Courvalin P. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrob Agents Chemother 2003; 47:704–708 [View Article] [PubMed]
    [Google Scholar]
  93. Malbruny B, Werno AM, Murdoch DR, Leclercq R, Cattoir V. Cross-resistance to lincosamides, streptogramins A, and pleuromutilins due to the lsa (C) gene in Streptococcus agalactiae UCN70. Antimicrob Agents Chemother 2011; 55:1470–1474 [View Article] [PubMed]
    [Google Scholar]
  94. Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 59:126–141 [View Article] [PubMed]
    [Google Scholar]
  95. Seoane AS, Levy SB. Identification of new genes regulated by the marRAB operon in Escherichia coli. J Bacteriol 1995; 177:530–535 [View Article] [PubMed]
    [Google Scholar]
  96. Heng J, Zhao Y, Liu M, Liu Y, Fan J et al. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res 2015; 25:1060–1073 [View Article] [PubMed]
    [Google Scholar]
  97. Nagakubo S, Nishino K, Hirata T, Yamaguchi A. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 2002; 184:4161–4167 [View Article] [PubMed]
    [Google Scholar]
  98. Nishino K, Yamaguchi A. EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. J Bacteriol 2002; 184:2319–2323 [View Article] [PubMed]
    [Google Scholar]
  99. Shimada T, Yamamoto K, Ishihama A. Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux. J Bacteriol 2009; 191:4562–4571 [View Article] [PubMed]
    [Google Scholar]
  100. Welch A, Awah CU, Jing S, van Veen HW, Venter H. Promiscuous partnering and independent activity of MexB, the multidrug transporter protein from Pseudomonas aeruginosa. Biochemical Journal 2010; 430:355–364 [View Article]
    [Google Scholar]
  101. Köhler T, Epp SF, Curty LK, Pechère JC. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 1999; 181:6300–6305 [View Article] [PubMed]
    [Google Scholar]
  102. Mima T, Kohira N, Li Y, Sekiya H, Ogawa W et al. Gene cloning and characteristics of the RND-type multidrug efflux pump MuxABC-OpmB possessing two RND components in Pseudomonas aeruginosa. Microbiology (Reading) 2009; 155:3509–3517 [View Article] [PubMed]
    [Google Scholar]
  103. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999; 43:415–417 [View Article]
    [Google Scholar]
  104. Chesneau O, Tsvetkova K, Courvalin P. Resistance phenotypes conferred by macrolide phosphotransferases. FEMS Microbiol Lett 2007; 269:317–322 [View Article] [PubMed]
    [Google Scholar]
  105. Kim EC, Wang M, Park CH, Kim E-C, Jacoby GA et al. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother 2009; 53:3582–3584 [View Article]
    [Google Scholar]
  106. Johnson LE. The pmrHFIJKLM Operon in Yersinia pseudotuberculosis enhances resistance to CCL28 and promotes phagocytic engulfment by Neutrophils; 2016
  107. Kim EH, Aoki T. The structure of the chloramphenicol resistance gene on a transferable R plasmid from the fish pathogen, Pasteurella piscicida. Microbiol Immunol 1993; 37:705–712 [View Article] [PubMed]
    [Google Scholar]
  108. Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG et al. A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun 2016; 7:1–10 [View Article]
    [Google Scholar]
  109. Zhang L, Li XZ, Poole K. SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2001; 45:3497–3503 [View Article]
    [Google Scholar]
  110. Doi Y, de Oliveira Garcia D, Adams J, Paterson DL. Coproduction of novel 16S rRNA methylase RmtD and metallo-β-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother 2007; 51:852–856 [View Article]
    [Google Scholar]
  111. Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 2005; 245:195–203 [View Article] [PubMed]
    [Google Scholar]
  112. Sharff A, Fanutti C, Shi J, Calladine C, Luisi B. The role of the TolC family in protein transport and multidrug efflux. From stereochemical certainty to mechanistic hypothesis. Eur J Biochem 2001; 268:5011–5026 [View Article] [PubMed]
    [Google Scholar]
  113. Xu X, Lin D, Yan G, Ye X, Wu S et al. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother 2010; 54:4643–4647 [View Article]
    [Google Scholar]
  114. McKessar SJ, Berry AM, Bell JM, Turnidge JD, Paton JC. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob Agents Chemother 2000; 44:3224–3228 [View Article]
    [Google Scholar]
  115. Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis 2006; 42:S25–S34 [View Article]
    [Google Scholar]
  116. Jack DL, Storms ML, Tchieu JH, Paulsen IT, Saier MH. A broad-specificity multidrug efflux pump requiring a pair of homologous SMR-type proteins. J Bacteriol 2000; 182:2311–2313 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001074
Loading
/content/journal/micro/10.1099/mic.0.001074
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error