1887

Abstract

, (Group A ; GAS) and (Group B ; GBS) are major aetiological agents of diseases in humans. The cellular membrane, a crucial site in host–pathogen interactions, is poorly characterized in streptococci. Moreover, little is known about whether or how environmental conditions influence their lipid compositions. Using normal phase liquid chromatography coupled with electrospray ionization MS, we characterized the phospholipids and glycolipids of , GAS and GBS in routine undefined laboratory medium, streptococcal defined medium and, in order to mimic the host environment, defined medium supplemented with human serum. In human serum-supplemented medium, all three streptococcal species synthesize phosphatidylcholine (PC), a zwitterionic phospholipid commonly found in eukaryotes but relatively rare in bacteria. We previously reported that utilizes the glycerophosphocholine (GPC) biosynthetic pathway to synthesize PC. Through substrate tracing experiments, we confirm that GAS and GBS scavenge lysoPC, a major metabolite in human serum, thereby using an abbreviated GPC pathway for PC biosynthesis. Furthermore, we found that plasmanyl-PC is uniquely present in the GBS membrane during growth with human serum, suggesting GBS possesses unusual membrane biochemical or biophysical properties. In summary, we report cellular lipid remodelling by the major pathogenic streptococci in response to metabolites present in human serum.

Funding
This study was supported by the:
  • Cecil H. and Ida Green Chair in Systems Biology Science
    • Principle Award Recipient: KelliPalmer
  • National Institute of General Medical Sciences (Award U54GM069338)
    • Principle Award Recipient: ZiqiangGuan
  • National Institute of Allergy and Infectious Diseases (Award R56AI139105)
    • Principle Award Recipient: KelliPalmer
  • National Institute of Allergy and Infectious Diseases (Award R21AI130666)
    • Principle Award Recipient: KelliPalmer
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001048
2021-05-13
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/5/mic001048.html?itemId=/content/journal/micro/10.1099/mic.0.001048&mimeType=html&fmt=ahah

References

  1. Facklam R. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 2002; 15:613–630 [View Article][PubMed]
    [Google Scholar]
  2. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis 2005; 5:685–694 [View Article][PubMed]
    [Google Scholar]
  3. CDC Antibiotic resistance threats in the United States Atlanta, GA: US Department of Health and Human Services, CDC; 2019
    [Google Scholar]
  4. Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018; 16:355–367 [View Article][PubMed]
    [Google Scholar]
  5. Kaplan EL, Top FH, Dudding BA, Wannamaker LW. Diagnosis of streptococcal pharyngitis: differentiation of active infection from the carrier state in the symptomatic child. J Infect Dis 1971; 123:490–501 [View Article][PubMed]
    [Google Scholar]
  6. Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 2000; 13:470–511 [View Article][PubMed]
    [Google Scholar]
  7. Schuchat A. Group B Streptococcus. Lancet 1999; 353:51–56 [View Article][PubMed]
    [Google Scholar]
  8. Campbell JR, Hillier SL, Krohn MA, Ferrieri P, Zaleznik DF et al. Group B streptococcal colonization and serotype-specific immunity in pregnant women at delivery. Obstet Gynecol 2000; 96:498–503 [View Article][PubMed]
    [Google Scholar]
  9. Nandyal RR. Update on group B streptococcal infections: perinatal and neonatal periods. J Perinat Neonatal Nurs 2008; 22:230–237 [View Article][PubMed]
    [Google Scholar]
  10. Edwards MS, Rench MA, Haffar AA, Murphy MA, Desmond MM et al. Long-term sequelae of group B streptococcal meningitis in infants. J Pediatr 1985; 106:717–722 [View Article][PubMed]
    [Google Scholar]
  11. Armistead B, Oler E, Adams Waldorf K, Rajagopal L. The double life of Group B Streptococcus: asymptomatic colonizer and potent pathogen. J Mol Biol 2019; 431:2914–2931 [View Article][PubMed]
    [Google Scholar]
  12. Wilkening RV, Federle MJ. Evolutionary constraints shaping Streptococcus pyogenes-host interactions. Trends Microbiol 2017; 25:562–572 [View Article][PubMed]
    [Google Scholar]
  13. Mitchell AM, Mitchell TJ. Streptococcus pneumoniae: virulence factors and variation. Clin Microbiol Infect 2010; 16:411–418 [View Article][PubMed]
    [Google Scholar]
  14. Cohen M, Panos C. Membrane lipid composition of Streptococcus pyogenes and derived L form. Biochemistry 1966; 5:2385–2392 [View Article][PubMed]
    [Google Scholar]
  15. Meiers M, Volz C, Eisel J, Maurer P, Henrich B et al. Altered lipid composition in Streptococcus pneumoniae cpoA mutants. BMC Microbiol 2014; 14:1–12 [View Article][PubMed]
    [Google Scholar]
  16. Trombe M-C, Lanéelle M-A, Lanéelle G. Lipid composition of aminopterin-resistant and sensitive strains of Streptococcus pneumoniae . Biochim Biophys Acta - Lipids Lipid Metab 1979; 574:290–300
    [Google Scholar]
  17. Brundish DE, Shaw N, Baddiley J. The phospholipids of Pneumococcus I-192R, A.T.C.C. 12213. Biochem J 1967; 104:205–211
    [Google Scholar]
  18. Fischer W. The polar lipids of group B streptococci. II. composition and positional distribution of fatty acids. Biochim Biophys Acta 1977; 487:89–104 [View Article][PubMed]
    [Google Scholar]
  19. Curtis J, Kim G, Wehr NB, Levine RL. Group B streptococcal phospholipid causes pulmonary hypertension. Proc Natl Acad Sci U S A 2003; 100:5087–5090 [View Article][PubMed]
    [Google Scholar]
  20. Goldfine H, Guan Z. Lipidomic analysis of bacteria by thin-layer chromatography and liquid chromatography/mass spectrometry. Hydrocarbon and Lipid Microbiology Protocols 2015 pp 125–139
    [Google Scholar]
  21. Doran KS, Engelson EJ, Khosravi A, Maisey HC, Fedtke I et al. Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest 2005; 115:2499–2507 [View Article][PubMed]
    [Google Scholar]
  22. Schneewind O, Missiakas D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J Bacteriol 2014; 196:1133–1142 [View Article][PubMed]
    [Google Scholar]
  23. Joyce LR, Manzer HS, Da Mendonça JC, Villarreal R, Doran KS et al. Streptococcus agalactiae MprF synthesizes a novel cationic glycolipid that promotes brain entry and meningitis. bioRxiv 2020
    [Google Scholar]
  24. Adams HM, Joyce LR, Guan Z, Akins RL, Palmer KL. Streptococcus mitis and S. oralis Lack a Requirement for CdsA, the Enzyme Required for Synthesis of Major Membrane Phospholipids in Bacteria. Antimicrob Agents Chemother 2017; 61:e02552–16 [View Article][PubMed]
    [Google Scholar]
  25. Joyce LR, Guan Z, Palmer KL. Phosphatidylcholine biosynthesis in mitis group streptococci via host metabolite scavenging. J Bacteriol 2019; 201:e00495–19 [View Article][PubMed]
    [Google Scholar]
  26. van de Rijn I, Kessler RE. Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun 1980; 27:444–448 [View Article][PubMed]
    [Google Scholar]
  27. Chang JC, LaSarre B, Jimenez JC, Aggarwal C, Federle MJ. Two group A streptococcal peptide pheromones act through opposing RGG regulators to control biofilm development. PLoS Pathog 2011; 7:e1002190 [View Article][PubMed]
    [Google Scholar]
  28. Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CRH et al. Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A 2012; 109:16504–16509 [View Article][PubMed]
    [Google Scholar]
  29. Li C, Tan BK, Zhao J, Guan Z. In vivo and in vitro synthesis of phosphatidylglycerol by an Escherichia coli cardiolipin synthase. J Biol Chem 2016; 291:25144–25153 [View Article][PubMed]
    [Google Scholar]
  30. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 2018; 46:D608–D617 [View Article][PubMed]
    [Google Scholar]
  31. Ojala PJ, Hirvonen TE, Hermansson M, Somerharju P, Parkkinen J. Acyl chain-dependent effect of lysophosphatidylcholine on human neutrophils. J Leukoc Biol 2007; 82:1501–1509 [View Article][PubMed]
    [Google Scholar]
  32. Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2016; 40:133–159 [View Article][PubMed]
    [Google Scholar]
  33. Geiger O, López-Lara IM, Sohlenkamp C. Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta - Mol Cell Biol Lipids 1831; 2013:503–513
    [Google Scholar]
  34. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J Exp Med 2001; 193:1067–1076 [View Article][PubMed]
    [Google Scholar]
  35. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R et al. The human serum metabolome. PLoS One 2011; 6:e16957 [View Article][PubMed]
    [Google Scholar]
  36. Goldfine H. The anaerobic biosynthesis of plasmalogens. FEBS Lett 2017; 591:2714–2719 [View Article][PubMed]
    [Google Scholar]
  37. Mawatari S, Sasuga Y, Morisaki T, Okubo M, Emura T et al. Identification of plasmalogens in Bifidobacterium longum, but not in Bifidobacterium animalis . Sci Rep 2020; 10:1–10 [View Article]
    [Google Scholar]
  38. Guan Z, Katzianer D, Zhu J, Goldfine H. Clostridium difficile contains plasmalogen species of phospholipids and glycolipids. Biochim Biophys Acta 2014; 1842:1353–1359 [View Article][PubMed]
    [Google Scholar]
  39. Gallego-García A, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Pérez-Castaño R et al. A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis. Science 2019; 366:128–132 [View Article][PubMed]
    [Google Scholar]
  40. Jackson DR, Cassilly CD, Plichta DR, Vlamakis H, Liu H et al. Plasmalogen biosynthesis by anaerobic bacteria: identification of a two-gene operon responsible for plasmalogen production in Clostridium perfringens . ACS Chem Biol 2021; 16:6–13 [View Article][PubMed]
    [Google Scholar]
  41. Zoeller RA, Morand OH, Raetz CR. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J Biol Chem 1988; 263:11590–11596 [View Article][PubMed]
    [Google Scholar]
  42. Broniec A, Żądło A, Pawlak A, Fuchs B, Kłosiński R et al. Interaction of plasmenylcholine with free radicals in selected model systems. Free Radic Biol Med 2017; 106:368–378 [View Article][PubMed]
    [Google Scholar]
  43. Hines KM, Alvarado G, Chen X, Gatto C, Pokorny A et al. Lipidomic and ultrastructural characterization of the cell envelope of Staphylococcus aureus grown in the presence of human serum. mSphere 2020; 5:e00339-20 17 06 2020 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001048
Loading
/content/journal/micro/10.1099/mic.0.001048
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error