1887
Preview this article:

There is no abstract available.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001033
2021-01-29
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/1/micro001033.html?itemId=/content/journal/micro/10.1099/mic.0.001033&mimeType=html&fmt=ahah

References

  1. Shilo M, Bruff B. Lysis of Gram-negative bacteria by host-independent ectoparasitic Bdellovibrio bacteriovorus isolates. J Gen Microbiol 1965; 40:317–328 [View Article][PubMed]
    [Google Scholar]
  2. Stolp H, Starr MP. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 1963; 29:217–248 [View Article][PubMed]
    [Google Scholar]
  3. Jurkevitch E. A Brief History of Short Bacteria: A Chronicle of Bdellovibrio (and Like Organisms) Research. In: Predatory Prokaryotes Berlin Heidelberg: Springer; 2006 pp 1–9
    [Google Scholar]
  4. Atterbury RJ, Tyson J. Predatory bacteria as living antibiotics - where are we now?. Microbiology 2021 19 Jan 2021 [View Article][PubMed]
    [Google Scholar]
  5. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol 2011; 77:5794–5803 [View Article][PubMed]
    [Google Scholar]
  6. Guiral M, Giudici-Orticoni M-T. Microbe Profile: Aquifex aeolicus: an extreme heat-loving bacterium that feeds on gases and inorganic chemicals. Microbiology 20201–3 [View Article][PubMed]
    [Google Scholar]
  7. Brock TD. The road to Yellowstone--and beyond. Annu Rev Microbiol 1995; 49:1–29 [View Article][PubMed]
    [Google Scholar]
  8. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 1998; 392:353–358 [View Article][PubMed]
    [Google Scholar]
  9. Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 2008; 36:6688–6719 [View Article][PubMed]
    [Google Scholar]
  10. Shao F. Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol 2008; 11:21–29 [View Article][PubMed]
    [Google Scholar]
  11. Li Y, Hu Y, Francis MS, Chen S. RcsB positively regulates the YersiniaYsc-Yop type III secretion system by activating expression of the master transcriptional regulator LcrF. Environ Microbiol 2015; 17:1219–1233 [View Article][PubMed]
    [Google Scholar]
  12. Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta 2014; 1843:1529–1541 [View Article][PubMed]
    [Google Scholar]
  13. Wall E, Majdalani N, Gottesman S. The complex RCS regulatory cascade. Annu Rev Microbiol 2018; 72:111–139 [View Article][PubMed]
    [Google Scholar]
  14. Fei K, Chao H-J, Hu Y, Francis MS, Chen S. CpxR regulates the Rcs phosphorelay system in controlling the Ysc-Yop type III secretion system in Yersinia pseudotuberculosis . Microbiology 2020 09 Dec 2020 [View Article][PubMed]
    [Google Scholar]
  15. Delhaye A, Collet J-F, Laloux G. Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli . mBio 2016; 7:1–10 [View Article][PubMed]
    [Google Scholar]
  16. Evans KL, Kannan S, Li G, de Pedro MA, Young KD. Eliminating a set of four penicillin binding proteins triggers the RCS phosphorelay and Cpx stress responses in Escherichia coli . J Bacteriol 2013; 195:4415–4424 [View Article][PubMed]
    [Google Scholar]
  17. Kloos J, Johnsen PJ, Harms K. Tn11 transposition in the course of natural transformation enables horizontal antibiotic resistance spread in Acinetobacter baylyi . Microbiology 2020 03 Dec 2020 [View Article][PubMed]
    [Google Scholar]
  18. Shi Q, Huguet-Tapia JC, Peters JE. Tn917 targets the region where DNA replication terminates in Bacillus subtilis, highlighting a difference in chromosome processing in the Firmicutes. J Bacteriol 2009; 191:7623–7627 [View Article][PubMed]
    [Google Scholar]
  19. Sweeney E, Sabnis A, Edwards AM, Harrison F. Effect of host-mimicking medium and biofilm growth on the ability of colistin to kill Pseudomonas aeruginosa . Microbiology 2020; 166:1171–1180 [View Article][PubMed]
    [Google Scholar]
  20. Harrison F, Diggle SP. An ex vivo lung model to study bronchioles infected with Pseudomonas aeruginosa biofilms. Microbiology 2016; 162:1755–1760 [View Article][PubMed]
    [Google Scholar]
  21. Sweeney E, Harrington NE, Harley Henriques AG, Hassan MM, Crealock-Ashurst B et al. An ex vivo cystic fibrosis model recapitulates key clinical aspects of chronic Staphylococcus aureus infection. Microbiology 2020; 14: [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001033
Loading
/content/journal/micro/10.1099/mic.0.001033
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error