1887

Abstract

Nudix proteins catalyse hydrolysis of pyrophosphate bonds in a variety of substrates and are ubiquitous in all domains of life. Their widespread presence and broad substrate specificity suggest that they have important cellular functions. In this review, we summarize the state of knowledge on microbial Nudix proteins involved in pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000993
2020-11-30
2021-01-15
Loading full text...

Full text loading...

References

  1. Rapisarda C, Fronzes R. Secretion systems used by bacteria to subvert host functions. Curr Issues Mol Biol 2018; 25:1–42 [CrossRef][PubMed]
    [Google Scholar]
  2. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005; 21:319–346 [CrossRef][PubMed]
    [Google Scholar]
  3. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15:740–755 [CrossRef][PubMed]
    [Google Scholar]
  4. Lamason RL, Welch MD. Actin-Based motility and cell-to-cell spread of bacterial pathogens. Curr Opin Microbiol 2017; 35:48–57 [CrossRef][PubMed]
    [Google Scholar]
  5. Treffers HP, Spinelli V, Belser NO. A factor (or mutator gene) influencing mutation rates in Escherichia coli . Proc Natl Acad Sci U S A 1954; 40:1064–1071 [CrossRef][PubMed]
    [Google Scholar]
  6. Yanofsky C, Cox EC, Horn V. The unusual mutagenic specificity of an E. coli mutator gene. Proc Natl Acad Sci U S A 1966; 55:274–281 [CrossRef][PubMed]
    [Google Scholar]
  7. Maki H, Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 1992; 355:273–275 [CrossRef][PubMed]
    [Google Scholar]
  8. Taddei F, Hayakawa H, Bouton MF, Cirinesi AM, Matic I et al. Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 1997; 278:128–130 [CrossRef][PubMed]
    [Google Scholar]
  9. Frick DN, Bessman MJ. Cloning, purification and properties of a novel NADH pyrophosphatase. Evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes. J. Biol. Chem 1996; 270:1529–1534
    [Google Scholar]
  10. Bessman MJ, Frick DN, O'Handley SF. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes . J Biol Chem 1996; 271:25059–25062 [CrossRef][PubMed]
    [Google Scholar]
  11. Wang XD, Gu J, Wang T, Bi LJ, Zhang ZP et al. Comparative analysis of mycobacterial NADH pyrophosphatase isoforms reveals a novel mechanism for isoniazid and ethionamide inactivation. Mol Microbiol 2011; 82:1375–1391 [CrossRef][PubMed]
    [Google Scholar]
  12. Moore AM, Patel S, Forsberg KJ, Wang B, Bentley G et al. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLoS One 2013; 8:e78822 [CrossRef][PubMed]
    [Google Scholar]
  13. Srouji JR, Xu A, Park A, Kirsch JF, Brenner SE. The evolution of function within the Nudix homology clan. Proteins 2017; 85:775–811 [CrossRef][PubMed]
    [Google Scholar]
  14. McLennan AG. Substrate ambiguity among the Nudix hydrolases: biologically significant, evolutionary remnant, or both?. Cell Mol Life Sci 2013; 70:373–385 [CrossRef][PubMed]
    [Google Scholar]
  15. Patil AGG, Sang PB, Govindan A, Varshney U. Mycobacterium tuberculosis MutT1 (Rv2985) and ADPRase (Rv1700) proteins constitute a two-stage mechanism of 8-oxo-dGTP and 8-oxo-GTP detoxification and adenosine to cytidine mutation avoidance. J Biol Chem 2013; 288:11252–11262 [CrossRef][PubMed]
    [Google Scholar]
  16. Castellanos-Juárez FX, Álvarez-Álvarez C, Yasbin RE, Setlow B, Setlow P et al. YtkD and MutT protect vegetative cells but not spores of Bacillus subtilis from oxidative stress. J Bacteriol 2006; 188:2285–2289 [CrossRef]
    [Google Scholar]
  17. Oliver A, Sánchez JM, Blázquez J. Characterization of the GO system of Pseudomonas aeruginosa . FEMS Microbiol Lett 2002; 217:31–35 [CrossRef][PubMed]
    [Google Scholar]
  18. Steyert SR, Messing SA, Amzel LM, Gabelli SB, Piñeiro SA. Identification of Bdellovibrio bacteriovorus HD100 Bd0714 as a Nudix dGTPase. J Bacteriol 2008; 190:8215–8219 [CrossRef][PubMed]
    [Google Scholar]
  19. Wagley S, Borne R, Harrison J, Baker-Austin C, Ottaviani D et al. Galleria mellonella as an infection model to investigate virulence of Vibrio parahaemolyticus . Virulence 2018; 9:197–207 [CrossRef][PubMed]
    [Google Scholar]
  20. Zhou P, Liu L, Tong H, Dong X. Role of operon aaoSo-mutT in antioxidant defense in Streptococcus oligofermentans . PLoS One 2012; 7:e38133 [CrossRef][PubMed]
    [Google Scholar]
  21. Hansen S, Lewis K, Vulić M. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli . Antimicrob Agents Chemother 2008; 52:2718–2726 [CrossRef][PubMed]
    [Google Scholar]
  22. Monds RD, Newell PD, Wagner JW, Schwartzman JA, Lu W et al. Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways. J Bacteriol 2010; 192:3011–3023 [CrossRef][PubMed]
    [Google Scholar]
  23. Luciano DJ, Belasco JG. Np4A alarmones function in bacteria as precursors to RNA caps. Proc Natl Acad Sci U S A 2020; 117:3560–3567 [CrossRef][PubMed]
    [Google Scholar]
  24. Conyers GB, Bessman MJ. The gene ialA associated with the invasion of human erythrocytes by Bartonella bacilliformis designates a Nudix hydrolase active on dinucleoside 5'-polyphosphates. J Biol Chem 1999; 274:1203–1206 [CrossRef][PubMed]
    [Google Scholar]
  25. Gaywee J, Xu W, Radulovic S, Bessman MJ, Azad AF. The Rickettsia prowazekii invasion gene homolog (invA) encodes a Nudix hydrolase active on adenosine (5')-pentaphospho-(5')-adenosine. Mol Cell Proteomics 2002; 1:179–183 [CrossRef][PubMed]
    [Google Scholar]
  26. Lundin A, Nilsson C, Gerhard M, Andersson DI, Krabbe M et al. The NudA protein in the gastric pathogen Helicobacter pylori is an ubiquitous and constitutively expressed dinucleoside polyphosphate hydrolase. J Biol Chem 2003; 278:12574–12578 [CrossRef][PubMed]
    [Google Scholar]
  27. Liu H, Semino-Mora C, Dubois A. Mechanism of H. pylori intracellular entry: an in vitro study. Front Cell Infect Microbiol 2012; 2: [CrossRef]
    [Google Scholar]
  28. Bessman MJ, Walsh JD, Dunn CA, Swaminathan J, Weldon JE et al. The gene ygdP, associated with the invasiveness of Escherichia coli K1, designates a Nudix hydrolase Orf 176, active on adenosine (5’)-pentaphospho-(5’)-adenosine (Ap5A). J. Biol. Chem 2001; 276:37834–37837
    [Google Scholar]
  29. Ismail TM, Hart CA, McLennan AG. Regulation of dinucleoside polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of Salmonella enterica serovar typhimurium to invade cultured mammalian cells. J Biol Chem 2003; 278:32602–32607 [CrossRef][PubMed]
    [Google Scholar]
  30. Edelstein PH, Hu B, Shinzato T, Edelstein MAC, Xu W et al. Legionella pneumophila NudA is a Nudix hydrolase and virulence factor. Infect Immun 2005; 73:6567–6576 [CrossRef]
    [Google Scholar]
  31. Urick T, I-Chang C, Arena E, Xu W, Bessman MJ et al. The pnhA gene of Pasteurella multocida encodes a dinucleoside Oligophosphate pyrophosphatase member of the Nudix hydrolase superfamily. J Bacteriol 2005; 187:5809–5817 [CrossRef]
    [Google Scholar]
  32. Alva-Pérez J, Arellano-Reynoso B, Hernández-Castro R, Suárez-Güemes F. The invA gene of Brucella melitensis is involved in intracellular invasion and is required to establish infection in a mouse model. Virulence 2014; 15:563–574
    [Google Scholar]
  33. Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5’pyrophosphate removal. Nature 2008; 45:355–358
    [Google Scholar]
  34. Bischler T, Hsieh P-K, Resch M, Liu Q, Tan HS et al. Identification of the RNA pyrophosphohydrolase RppH of Helicobacter pylori and global analysis of its RNA targets. J Biol Chem 2017; 292:1934–1950 [CrossRef][PubMed]
    [Google Scholar]
  35. Liu H, Semino-Mora C, Dubois A. Mechanism of H. pylori intracellular entry: an in vitro study. Front Cell Infect Microbiol 2012; 2:13 [CrossRef]
    [Google Scholar]
  36. Kujawa M, Lirski M, Ziecina M, Drabinska J, Modzelan M et al. Nudix-type RNA pyrophosphohydrolase provides homeostasis of virulence factor pyocyanin and functions as a global regulator in Pseudomonas aeruginosa . Mol Microbiol 2017; 106:381–394 [CrossRef]
    [Google Scholar]
  37. Safrany ST, Ingram SW, Cartwright JL, Falck JR, McLennan AG et al. The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J Biol Chem 1999; 274:21735–21740
    [Google Scholar]
  38. Sun Y, Li P, Shen D, Wei Q, He J et al. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD+ ratio in Arabidopsis . Mol Plant Pathol 2019; 20:533–546 [CrossRef][PubMed]
    [Google Scholar]
  39. Dong S, Yin W, Kong G, Yang X, Qutob D et al. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity. PLoS Pathog 2011; 7:e1002353 [CrossRef]
    [Google Scholar]
  40. Kong G, Zhao Y, Jing M, Huang J, Yang J et al. The activation of Phytophthora effector Avr3b by plant cyclophilin is required for the Nudix hydrolase activity of Avr3b. PLoS Pathog 2015; 11:e1005139 [CrossRef]
    [Google Scholar]
  41. Wolff KA, de la Peña AH, Nguyen HT, Pham TH, Amzel LM et al. A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog 2015; 11:e1004839 [CrossRef]
    [Google Scholar]
  42. Gao R, Wei W, Hassan BH, j L, Deng J et al. A single regulator NrtR controls bacterial NAD+homeostasis via its acetylation. Elife 2019
    [Google Scholar]
  43. Wang Q, Hassan BH, Lou N, Merritt J, Feng Y. Functional definition of NrtR, a remnant regulator of NAD +homeostasis in the zoonotic pathogen Streptococcus suis . FASEB j. 2019; 33:6055–6068 [CrossRef]
    [Google Scholar]
  44. Okon E, Dethlefsen S, Pelnikevich A, Barneveld Avan, Munder A et al. Key role of an ADP - ribose - dependent transcriptional regulator of NAD metabolism for fitness and virulence of Pseudomonas aeruginosa . Int J Med Microbiol 2017; 307:83–94 [CrossRef][PubMed]
    [Google Scholar]
  45. Rodionova IA, Schuster BM, Guinn KM, Sorci L, Scott DA et al. Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria. mBio 2014; 5:e00747 [CrossRef]
    [Google Scholar]
  46. Granja AG, Nogal ML, Hurtado C, Salas J, Salas ML et al. Modulation of p53 cellular function and cell death by African swine fever virus. J Virol 2004; 78:7165–7174 [CrossRef][PubMed]
    [Google Scholar]
  47. Quintas A, Pérez-Núñez D, Sánchez EG, Nogal ML, Hentze MW et al. Characterization of the African swine fever virus decapping enzyme during infection. J Virol 2017; 91:e00990–17 [CrossRef][PubMed]
    [Google Scholar]
  48. Page BD, Valerie NC, Wright RH, Wallner O, Isaksson R et al. Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells. Nat Commun 2018; 9:1–14 [CrossRef]
    [Google Scholar]
  49. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [CrossRef]
    [Google Scholar]
  50. Drabinska J, Ziecina M, Modzelan M, Jagura‐Burdzy G, Kraszewska E. Individual Nudix hydrolases affect diverse features of Pseudomonas aeruginosa . Microbiologyopen 2020; 9:e1052 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000993
Loading
/content/journal/micro/10.1099/mic.0.000993
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error