1887

Abstract

The strictly anaerobic bacterium is well known for its ability to convert sugars into organic acids and solvents, most notably the potential biofuel butanol. However, the regulation of its fermentation metabolism, in particular the shift from acid to solvent production, remains poorly understood. The aim of this study was to investigate whether cell–cell communication plays a role in controlling the timing of this shift or the extent of solvent formation. Analysis of the available genome sequences revealed the presence of eight putative RRNPP-type quorum-sensing systems, here designated to , each consisting of an RRNPP-type regulator gene followed by a small open reading frame encoding a putative signalling peptide precursor. The identified regulator and signal peptide precursor genes were designated to and to , respectively. Triplicate regulator mutants were generated in strain ATCC 824 for each of the eight systems and screened for phenotypic changes. The mutants showed increased solvent formation during early solventogenesis and hence the QssB system was selected for further characterization. Overexpression of severely reduced solvent and endospore formation and this effect could be overcome by adding short synthetic peptides to the culture medium representing a specific region of the QspB signalling peptide precursor. In addition, overexpression of increased the production of acetone and butanol and the initial (48 h) titre of heat-resistant endospores. Together, these findings establish a role for QssB quorum sensing in the regulation of early solventogenesis and sporulation in .

Funding
This study was supported by the:
  • Nigel P Minton , Biotechnology and Biological Sciences Research Council , (Award BB/G016224/1)
  • Not Applicable , Biotechnology and Biological Sciences Research Council , (Award BB/J014508/1)
  • Nigel P Minton , Biotechnology and Biological Sciences Research Council , (Award BB/L013940/1)
  • Nigel P Minton , FP7 People: Marie-Curie Actions , (Award 237942)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000916
2020-04-28
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/10.1099/mic.0.000916/mic000916.html?itemId=/content/journal/micro/10.1099/mic.0.000916&mimeType=html&fmt=ahah

References

  1. Dürre P. Formation of solvents in clostridia, p671-693. 2005. In Dürre P. editor Handbook on Clostridia Boca Raton, Fla: CRC Press; 2005
    [Google Scholar]
  2. Jones DT, Woods DR. Acetone-Butanol fermentation revisited. Microbiol Rev 1986; 50:484–524 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Jones DT. Applied acetone-butanol fermentation, p. 125–168. In Bahl H, Dürre P. (editors) Clostridia. Biotechnology and Medical Applications Weinheim, Germany: Wiley-VCH Verlag GmbH; 2001
    [Google Scholar]
  4. Yoo M, Nguyen N-P-T, Soucaille P. Trends in systems biology for the analysis and engineering of Clostridium acetobutylicum metabolism. Trends Microbiol 2020; 28:118–140 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Lütke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 2011; 22:634–647 [CrossRef]
    [Google Scholar]
  6. Xue C, Cheng C. Chapter 2 –Butanol production by Clostridium, Adv. Bioenerg 2019; 4:35–77
    [Google Scholar]
  7. Ravagnani A, Jennert KC, Steiner E, Grünberg R, Jefferies JR, Wilkinson SR et al. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol Microbiol 2000; 37:1172–1185 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Harris LM, Welker NE, Papoutsakis ET. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 2002; 184:3586–3597 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Thormann K, Feustel L, Lorenz K, Nakotte S, Dürre P. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation. J Bacteriol 2002; 184:1966–1973 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Nold N. Untersuchungen zur Regulation des sol-Operons in Clostridium acetobutylicum. PhD thesis, University of Ulm; 2008
  11. Zimmermann T. Untersuchungen zur Butanolbildung von Hyperthermus butylicus und Clostridium acetobutylicum. PhD thesis, University of Ulm; 2013
  12. Ren C, Gu Y, Wu Y, Zhang W, Yang C et al. Pleiotropic functions of catabolite control protein CcpA in Butanol-producing Clostridium acetobutylicum. BMC Genomics 2012; 13:349 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Jones AJ, Fast AG, Clupper M, Papoutsakis ET. Small and low but potent: the complex regulatory role of the small RNA SolB in Solventogenesis in Clostridium acetobutylicum. Appl Environ Microbiol 2018; 84:e00597–18 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Steiner E, Dago AE, Young DI, Heap JT, Minton NP et al. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol Microbiol 2011; 80:641–654 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Zhao Y, Tomas CA, Rudolph FB, Papoutsakis ET, Bennett GN. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl Environ Microbiol 2005; 71:530–537 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Steiner E, Scott J, Minton NP, Winzer K. An agr quorum sensing system that regulates granulose formation and sporulation in Clostridium acetobutylicum. Appl Environ Microbiol 2012; 78:1113–1122 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Monnet V, Juillard V, Gardan R. Peptide conversations in Gram-positive bacteria. Crit Rev Microbiol 2016; 42:1–13 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and structural analyses of RRNPP intercellular peptide signaling of Gram-positive bacteria. Annu Rev Genet 2017; 51:311–333 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Perez-Pascual D, Monnet V, Gardan R. Bacterial cell-cell communication in the host via RRNPP peptide-binding regulators. Front Microbiol 2016; 7:706 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Kosaka T, Nakayama S, Nakaya K, Yoshino S, Furukawa K. Characterization of the sol operon in butanol-hyperproducing Clostridium saccharoperbutylacetonicum strain N1-4 and its degeneration mechanism. Biosci Biotechnol Biochem 2007; 71:58–68 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Wuster A, Babu MM. Conservation and evolutionary dynamics of the agr cell-to-cell communication system across firmicutes. J Bacteriol 2008; 190:743–746 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Herman N, Kim S-J, JS L, Cai W, Koshino H et al. The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate butanol production and differentiation. Nat. Commun 2017; 15:1514
    [Google Scholar]
  23. Pottathil M, Lazazzera BA. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Front Biosci 2003; 8:32–45 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Rocha-Estrada J, Aceves-Diez AE, Guarneros G, de la Torre M. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol 2010; 87:913–923 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Ehsaan M, Kuit W, Zhang Y, Cartman ST, Heap JT et al. Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 2016; 9:4 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Hu S, Zheng H, Gu Y, Zhao J, Zhang W et al. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. BMC Genomics 2011; 12:93 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  27. Bao G, Wang R, Zhu Y, Dong H, Mao S et al. Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture. J Bacteriol 2011; 193:5007–5008 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Karpenahalli MR, Lupas AN, Söding J. TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. BMC Bioinformatics 2007; 8:2 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM et al. The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 2010; 80:49–55 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Heap JT, Pennington OJ, Cartman ST, Minton NP. A modular system for Clostridium shuttle plasmids. J Microbiol Methods 2009; 78:79–85 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  31. Perchat S, Talagas A, Poncet S, Lazar N, Li de la Sierra-Gallay I, Sierra-Gallay Ldela I et al. How quorum sensing connects sporulation to necrotrophism in Bacillus thuringiensis. PLoS Pathog 2016; 12:e1005779 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA et al. The cause of "acid-crash" and "acidogenic fermentations" during the batch acetone-butanol-ethanol (ABE-) fermentation process. J Mol Microbiol Biotechnol 2000; 2:95–100[PubMed][PubMed]
    [Google Scholar]
  33. Even-Tov E, Omer Bendori S, Pollak S, Eldar A. Transient duplication-dependent divergence and horizontal transfer underlie the evolutionary dynamics of bacterial cell-cell signaling. PLoS Biol 2016; 14:e2000330–23 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  34. Cardoso PdeF, Perchat S, Vilas-Boas LA, Lereclus D, Vilas-Bôas GT. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group. Curr Genet 2019; 65:1367–1381 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  35. Poehlein A, Solano JDM, Flitsch SK, Krabben P, Winzer K et al. Microbial solvent formation revisited by comparative genome analysis. Biotechnol Biofuels 2017; 10:58 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Jones DT, Webster JR, Woods DR. The formation of simple fruiting body-like structures associated with sporulation under aerobic conditions in Clostridium acetobutylicum. Microbiology 1980; 116:195–200 [CrossRef]
    [Google Scholar]
  37. Even-Tov E, Bendori SO, Valastyan J, Ke X, Pollak S et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol 2016; 14:e1002386 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  38. Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC et al. Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci U S A 2014; 111:4280–4284 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  39. Kotte A-K. RRNPP-type Quorum Sensing in Clostridium acetobutylicum. PhD thesis, University of Nottingham.; 2013
  40. Edwards AN, Tamayo R, McBride SM. A novel regulator controls Clostridium difficile sporulation, motility and toxin production. Mol Microbiol 2016; 100:954–971 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  41. Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L et al. Molecular basis for group-specific activation of the virulence regulator plcR by PapR heptapeptides. Nucleic Acids Res 2008; 36:3791–3801 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  42. Slamti L, Lereclus D. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. J Bacteriol 2005; 187:1182–1187 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  43. Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K et al. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 2012; 14:630–641 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  44. O'Brien RW, Morris JG. Oxygen and the growth and metabolism of Clostridium acetobutylicum. J Gen Microbiol 1971; 68:307–318 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  45. Hartmanis MG, Gatenbeck S. Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 1984; 47:1277–1283 [CrossRef][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000916
Loading
/content/journal/micro/10.1099/mic.0.000916
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error