-
Volume 166,
Issue 6,
2020
Volume 166, Issue 6, 2020

- Editorial
-
- Review
-
-
-
Microbial gas vesicles as nanotechnology tools: exploiting intracellular organelles for translational utility in biotechnology, medicine and the environment
More LessA range of bacteria and archaea produce gas vesicles as a means to facilitate flotation. These gas vesicles have been purified from a number of species and their applications in biotechnology and medicine are reviewed here. Halobacterium sp. NRC-1 gas vesicles have been engineered to display antigens from eukaryotic, bacterial and viral pathogens. The ability of these recombinant nanoparticles to generate an immune response has been quantified both in vitro and in vivo. These gas vesicles, along with those purified from Anabaena flos-aquae and Bacillus megaterium , have been developed as an acoustic reporter system. This system utilizes the ability of gas vesicles to retain gas within a stable, rigid structure to produce contrast upon exposure to ultrasound. The susceptibility of gas vesicles to collapse when exposed to excess pressure has also been proposed as a biocontrol mechanism to disperse cyanobacterial blooms, providing an environmental function for these structures.
-
-
- Biotechnology
-
-
-
Multigenic engineering of the chloroplast genome in the green alga Chlamydomonas reinhardtii
More LessThe chloroplast of microalgae such as Chlamydomonas reinhardtii represents an attractive chassis for light-driven production of novel recombinant proteins and metabolites. Methods for the introduction and expression of transgenes in the chloroplast genome (=plastome) of C. reinhardtii are well-established and over 100 different proteins have been successfully produced. However, in almost all reported cases the complexity of the genetic engineering is low, and typically involves introduction into the plastome of just a single transgene together with a selectable marker. In order to exploit fully the potential of the algal chassis it is necessary to establish methods for multigenic engineering in which many transgenes can be stably incorporated into the plastome. This would allow the synthesis of multi-subunit proteins and the introduction into the chloroplast of whole new metabolic pathways. In this short communication we report a proof-of-concept study involving both a combinatorial and serial approach, with the goal of synthesizing five different test proteins in the C. reinhardtii chloroplast. Analysis of the various transgenic lines confirmed the successful integration of the transgenes and accumulation of the gene products. However, the work also highlights an issue of genetic instability when using the same untranslated region for each of the transgenes. Our findings therefore help to define appropriate strategies for robust multigenic engineering of the algal chloroplast.
-
-
- Cell Biology
-
-
-
Transient enhanced cell division by blocking DNA synthesis in Escherichia coli
More LessDuplication of the bacterial nucleoid is necessary for cell division hence specific arrest of DNA replication inhibits divisions culminating in filamentation, nucleoid dispersion and appearance of a-nucleated cells. It is demonstrated here that during the first 10 min however, Escherichia coli enhanced residual divisions: the proportion of constricted cells doubled (to 40%), nucleoids contracted and cells remodelled dimensions: length decreased and width increased. The preliminary data provides further support to the existence of temporal and spatial couplings between the nucleoid/replisome and the sacculus/divisome, and is consistent with the idea that bacillary bacteria modulate width during the division process exclusively.
-
-
- Environmental Biology
-
-
-
Identification of Photorhabdus symbionts by MALDI-TOF MS
More LessSpecies of the bacterial genus Photorhabus live in a symbiotic relationship with Heterorhabditis entomopathogenic nematodes. Besides their use as biological control agents against agricultural pests, some Photorhabdus species are also a source of natural products and are of medical interest due to their ability to cause tissue infections and subcutaneous lesions in humans. Given the diversity of Photorhabdus species, rapid and reliable methods to resolve this genus to the species level are needed. In this study, we evaluated the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of Photorhabdus species. To this end, we established a collection of 54 isolates consisting of type strains and multiple field strains that belong to each of the validly described species and subspecies of this genus. Reference spectra for the strains were generated and used to complement a currently available database. The extended reference database was then used for identification based on the direct transfer sample preparation method and the protein fingerprint of single colonies. High-level discrimination of distantly related species was observed. However, lower discrimination was observed with some of the most closely related species and subspecies. Our results therefore suggest that MALDI-TOF MS can be used to correctly identify Photorhabdus strains at the genus and species level, but has limited resolution power for closely related species and subspecies. Our study demonstrates the suitability and limitations of MALDI-TOF-based identification methods for assessment of the taxonomic position and identification of Photorhabdus isolates.
-
-
-
-
Expression of an alcohol dehydrogenase gene in a heterotrophic bacterium induces carbon dioxide-dependent high-yield growth under oligotrophic conditions
Sphingobium japonicum strain UT26, whose γ-hexachlorocyclohexane-degrading ability has been studied in detail, is a typical aerobic and heterotrophic bacterium that needs organic carbon sources for its growth, and cannot grow on a minimal salt agar medium prepared without adding any organic carbon sources. Here, we isolated a mutant of UT26 with the ability to grow to visible state on such an oligotrophic medium from a transposon-induced mutant library. This high-yield growth under oligotrophic conditions (HYGO) phenotype was CO2-dependent and accompanied with CO2 incorporation. In the HYGO mutant, a transposon was inserted just upstream of the putative Zn-dependent alcohol dehydrogenase (ADH) gene (adhX) so that the adhX gene was constitutively expressed, probably by the transposon-derived promoter. The adhX-deletion mutant (UT26DAX) harbouring a plasmid carrying the adhX gene under the control of a constitutive promoter exhibited the HYGO phenotype. Moreover, the HYGO mutants spontaneously emerged among the UT26-derived hypermutator strain cells, and adhX was highly expressed in these HYGO mutants, while no HYGO mutant appeared among UT26DAX-derived hypermutator strain cells, indicating the necessity of adhX for the HYGO phenotype. His-tagged AdhX that was expressed in Escherichia coli and purified to homogeneity showed ADH activity towards methanol and other alcohols. Mutagenesis analysis of the adhX gene indicated a correlation between the ADH activity and the HYGO phenotype. These results demonstrated that the constitutive expression of an adhX-encoding protein with ADH activity in UT26 leads to the CO2-dependent HYGO phenotype. Identical or nearly identical adhX orthologues were found in other sphingomonad strains, and most of them were located on plasmids, suggesting that the adhX-mediated HYGO phenotype may be an important adaptation strategy to oligotrophic environments among sphingomonads.
-
- Physiology and Metabolism
-
-
-
MSMEG_2432 of Mycobacterium smegmatis mc2155 is a dual function enzyme that exhibits DD-carboxypeptidase and β-lactamase activities
Mycobacterial peptidoglycan (PG) is an unsolved puzzle due to its complex structure and involvement of multiple enzymes in the process of its remodelling. dd-Carboxypeptidases are low molecular mass penicillin-binding proteins (LMM-PBPs) that catalyzes the cleavage of terminal d-Ala of muramyl pentapeptide branches and thereby helps in the PG remodelling process. Here, we have assigned the function of a putative LMM-PBP, MSMEG_2432 of Mycobacterium smegmatis , by showing that it exhibits both dd-CPase and β-lactamase activities. Like conventional dd-CPase (PBP5 from E. coli), upon ectopic complementation in a deformed seven PBP deletion mutant of E. coli, MSMEG_2432 has manifested its ability to restore ~75 % of the cell population to their normal rod shape. Further, in vitro dd-CPase assay has confirmed its ability to release terminal d-Ala from the synthetic tripeptide and the peptidoglycan mimetic pentapeptide substrates ending with d-Ala-d-Ala. Also, elevated resistance against penicillins and cephalosporins upon ectopic expression of MSMEG_2432 suggests the presence of β-lactamase activity, which is further confirmed in vitro through nitrocefin hydrolysis assay. Moreover, it is found apparent that D169A substitution in MSMEG_2432 influences both of its in vivo and in vitro dd-CPase and β-lactamase activities. Thus, we infer that MSMEG_2432 is a dual function enzyme that possesses both dd-CPase and β-lactamase activities.
-
-
-
-
A response regulator protein with antar domain, AvnR, in Acinetobacter baumannii ATCC 17978 impacts its virulence and amino acid metabolism
More LessAcinetobacter baumannii, a Gram-negative coccobacillus, is notorious for its involvement in opportunistic infections around the world. Its resistance to antibiotics makes treatment of infections challenging. In this study, we describe a novel response regulator protein, AvnR (A1S_2006) that regulates virulence-related traits in A. baumannii ATCC17978. Sequence analysis suggests that AvnR is a CheY-like response regulator and contains the RNA-binding ANTAR (AmiR and NasR transcription anti-termination regulators) domain. We show that AvnR plays a role in regulating biofilm formation (on glass and plastic surfaces), surface motility, adhesion to A549 cells as well as in nitrogen metabolism in A. baumannii . RNA-Seq analysis revealed that avnR deletion results in altered expression of more than 150 genes (116 upregulated and 42 downregulated). RNA-Seq data suggest that altered biofilm formation and surface motility observed in the avnR deletion mutant is likely mediated by previously unknown pathways. Of note, was the altered expression of genes predicted to be involved in amino acid transport and metabolism in avnR deletion mutant. Biolog phenotypic array showed that deletion of avnR hampered A. baumannii ATCC17978’s ability to metabolize various nitrogen sources, particularly that of glutamic acid, serine, histidine, aspartic acid, isoleucine and arginine. Taken together our data show that AvnR, the first ANTAR protein described in A. baumannii, affects virulence phenotypes as well as its ability to metabolize nitrogen sources.
-
-
-
AsnB is responsible for peptidoglycan precursor amidation in Clostridium difficile in the presence of vancomycin
Clostridium difficile 630 possesses a cryptic but functional gene cluster vanG Cd homologous to the vanG operon of Enterococcus faecalis . Expression of vanG Cd in the presence of subinhibitory concentrations of vancomycin is accompanied by peptidoglycan amidation on the meso-DAP residue. In this paper, we report the presence of two potential asparagine synthetase genes named asnB and asnB2 in the C. difficile genome whose products were potentially involved in this peptidoglycan structure modification. We found that asnB expression was only induced when C. difficile was grown in the presence of vancomycin, yet independently from the vanG Cd resistance and regulation operons. In addition, peptidoglycan precursors were not amidated when asnB was inactivated. No change in vancomycin MIC was observed in the asnB mutant strain. In contrast, overexpression of asnB resulted in the amidation of most of the C. difficile peptidoglycan precursors and in a weak increase of vancomycin susceptibility. AsnB activity was confirmed in E. coli . In contrast, the expression of the second asparagine synthetase, AsnB2, was not induced in the presence of vancomycin. In summary, our results demonstrate that AsnB is responsible for peptidoglycan amidation of C. difficile in the presence of vancomycin.
-
- Regulation
-
-
-
RRNPP-type quorum sensing affects solvent formation and sporulation in Clostridium acetobutylicum
More LessThe strictly anaerobic bacterium Clostridium acetobutylicum is well known for its ability to convert sugars into organic acids and solvents, most notably the potential biofuel butanol. However, the regulation of its fermentation metabolism, in particular the shift from acid to solvent production, remains poorly understood. The aim of this study was to investigate whether cell–cell communication plays a role in controlling the timing of this shift or the extent of solvent formation. Analysis of the available C. acetobutylicum genome sequences revealed the presence of eight putative RRNPP-type quorum-sensing systems, here designated qssA to qssH, each consisting of an RRNPP-type regulator gene followed by a small open reading frame encoding a putative signalling peptide precursor. The identified regulator and signal peptide precursor genes were designated qsrA to qsrH and qspA to qspH, respectively. Triplicate regulator mutants were generated in strain ATCC 824 for each of the eight systems and screened for phenotypic changes. The qsrB mutants showed increased solvent formation during early solventogenesis and hence the QssB system was selected for further characterization. Overexpression of qsrB severely reduced solvent and endospore formation and this effect could be overcome by adding short synthetic peptides to the culture medium representing a specific region of the QspB signalling peptide precursor. In addition, overexpression of qspB increased the production of acetone and butanol and the initial (48 h) titre of heat-resistant endospores. Together, these findings establish a role for QssB quorum sensing in the regulation of early solventogenesis and sporulation in C. acetobutylicum .
-
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
